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Abstract

We present a novel, hybrid parallel continuous collision detection (HPCCD) method that exploits the availability of
multi-core CPU and GPU architectures. HPCCD is based on a bounding volume hierarchy (BVH) and selectively
performs lazy reconstructions. Our method works with a wide variety of deforming models and supports self-
collision detection. HPCCD takes advantage of hybrid multi-core architectures — using the general-purpose CPUs
to perform the BVH traversal and culling while GPUs are used to perform elementary tests that reduce to solving
cubic equations. We propose a novel task decomposition method that leads to a lock-free parallel algorithm in the
main loop of our BVH-based collision detection to create a highly scalable algorithm. By exploiting the availability
of hybrid, multi-core CPU and GPU architectures, our proposed method achieves more than an order of magnitude
improvement in performance using four CPU-cores and two GPUs, compared to using a single CPU-core. This
improvement results in an interactive performance, up to 148 fps, for various deforming benchmarks consisting of

tens or hundreds of thousand triangles.

1. Introduction

Collision detection between deforming models is a funda-
mental technique in various applications including games,
physically-based simulation, CAD/CAM, and computer an-
imation. Collision detection is classi ed as two categories:
discrete and continuous methods.

Discrete collision detection (DCD) nds intersecting prim-
itives at discrete time steps. DCD can be performed quite
ef ciently, but may miss colliding primitives that occur be-

tween two discrete time steps. This issue can be quite prob-

lematic in physically-based simulations, CAD/CAM, etc. On
the other hand, continuous collision detection (CCD) identi-
es intersecting primitives at the rst time-of-contact (ToC)
during a time interval between two discrete time steps. Typ-
ically, CCD is performed by using bounding volume hi-
erarchies (BVHs) of input models. The BVHs are hierar-
chically traversed to nd contacts among models. At the
leaf nodes of the BVHSs, elementary tests detecting the rst
ToC and the corresponding intersecting primitives are per-
formed [Pro97]. CCD methods, however, require much more
computation time compared to DCD methods and have not
been widely used in interactive applications.

To improve the performance of CCD methods, many prior

ods supporting self-collision detections and the general
polygonal models may take hundreds of milliseconds and
even a few seconds on performing CCD for deforming mod-

els consisting of hundreds of thousand triangles and may not
be suitable for interactive applications.

Recently, instead of continuing to increase the clock fre-
guency of a single core, the number of cores on a single
chip has continued to increase [Bor07]. Current commodity
CPUs have up to four or eight cores and current GPUs have
more than hundreds of cores [NVI08]. With the number of
cores expected to continue to increase, designing algorithms
that can properly exploit the multi-core architectures will be
critical to achieve overall performance improvement.

Main contributions: We present a novel hybrid parallel

continuous collision detection (HPCCD) method utilizing

both CPUs and GPUs to achieve the interactive perfor-
mance of CCD between deforming models consisting of
tens or hundreds of thousands of triangles. Our HPCCD
method supports various kinds of deforming models and
self-collision detection. Our method uses BVHs of deform-
ing models and selectively performs a lazy BV reconstruc-
tion method to improve the performance of CCD. Since
CPUs are capable of complex branch predictions and ef -

approaches accelerate the performance of CCD by designingciently support irregular memory accesses, we use CPUs to

specialized algorithms on certain types of models (e.g., rigid
objects [RKCO02], articulated bodies [ZRLKO07], and meshes
with xed topology [GKJ 05, WBO05]), developing ef cient
culling methods [CTMO08, TCYMO8], and introducing CPU
or GPU parallel collision detection methods [GRLMO3,
KP03, HTG04, SGG06, LL02, FF04, TMTO09]. Prior meth-
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perform the BVH traversal and culling. In order to design
a highly scalable CPU-based hierarchy traversal and culling,
we propose a novel task decomposition that leads a lock-free
parallel algorithm in the main loop of our collision detection
method, although we use locks in non-critical parts (Sec. 4).
Since GPUs are highly optimized for the regular streaming
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- E self-collision [VSCO01,GKJ05] specialized for certain types
N ' of input models (e.g., closed objects). Sud et al. [SG&
proposed a uni ed GPU-framework for various proximity
\ gueries including CCD between various deforming models.

A few CPU-based parallel CD methods also have been pro-
posed. Lawlor and Laxmikant [LLO2] proposed a voxel-
based CD method for static models and achieved up to

60% parallel ef ciency by using distributed-memory paral-

lel machines and applying a generic load-balancing method.

Figure 1: These images show two frames of our cloth simu-  rigyejredo and Fernando [FF04] designed a parallel CD al-
lation benchmark consisting of 92 Ktrlangles._lnthls_ bench- gorithm for a virtual prototype environment. This method
mark, our method spends 23 ms for CCD including self- achieved its best performance, 100% improvement, by using
collisions on average and achieves 10.4 times performance 5,y CPU-cores over using a single-core and then showed
improvement by using four CPU-cores and two GPUS over |gwer performance as more CPUs were added. These par-
a serial CPU-based CCD method. allel methods supported only DCD for static models. Tang
et al. [TMTO09] proposed a front-based task decomposition
oating-point operations, we use GPUs to execute the ele- method that utilizes multi-core processors for collision de-

mentary tests of the CCD that reduce to solving cubic equa- tection between deformable models. Their CPU-based paral-
tions (Sec. 5). lel method achieves a high scalability by even using 16 CPU-

) cores. We will compare our method with this CPU-based
In order to test our method, we apply our method to various parallel method in Sec. 6.3.

benchmarks consisting of tens or hundreds of thousands of

triangles (Sec. 6). In the tested benchmarks, our method im- 2 3. | ock-Free Parallel Algorithms

proves the performance of CCD by more than an order of

magnitude using four CPU-cores and two GPUs compared The traditional synchronization based on locks can degrade
with using a single CPU-core. This performance improve- the performance of parallel algorithms because of lock con-
ment results in the interactive performance, up to 148 fps, tention [CS99]. To address this problem, there have been
for CCD in our benchmarks. This performance improvement many efforts to reduce or eliminate the use of locks by de-
is caused by reducing dependencies among parallel compu-signing lock-free algorithms relying on atomic swap instruc-
tational tasks and exploiting both CPUs and GPUs. We con- tions [Her03]. However, these lock-free algorithms are based
clude and present future directions in Sec. 7 . on the assumption that actual lock contentions are rare and
thus reducing con icting accesses to shared data structure is
crucial. On the other hand, our HPCCD method eliminates
con icting accesses to shared BVH data in the main loop
of CD part based on our novel task decomposition method,
although locks are only used in non-critical parts.

2. Related Work

The problem of collision detection (CD) has been well
studied and excellent surveys are available [LMO03, Eri04,
TKH 05]. In this section, we review previous work related
directly to our method. 3. Overview

2.1. Continuous Collision Detection (CCD) In this section, we give a background on CCD and an

) overview of our hybrid parallel method.
There are many different CCD approaches and some of

them include algebraic methods [Pro97,KR03], adaptive bi- 5 1 Background on CCD
section [SSL02], etc. CCD methods have been further op-

timized for rigid models [RKC02] and articulated mod-
els [ZRLKO7]. CCD methods for deformable polygonal
meshes were initially designed for meshes with xed con-
nectivity [GKJ 05,WB05] and, recently, have been extended
to models with topology changes [CTM08, TCYMO08]. Also,

a few culling techniques have been proposed to remove re-

dundant elementary tests for CCD [TCYMO08, CTM08].

2.2. Parallel Collision Detection

There have been considerable efforts to perform collision de-

tection ef ciently using GPUs [HTGO04, KP03, GRLMO03].

Govindaraju et al. [GRLMO03] proposed an approach for fast
CD between complex models using GPU-accelerated visi-
bility queries. There have been GPU-based algorithms for

In order to nd intersecting primitives at the rst ToC dur-
ing a time interval between two discrete time steps, CCD
methods model continuous motions of primitives by lin-
early interpolating positions of primitives between two dis-
crete time steps. We also use this linear continuous mo-
tion. There are two types of contacts: inter-collisions be-
tween two different models and intra-collisions, i.e., self-
collisions, within a model. Both contacts arise in two contact
con gurations, vertex-face (VF) case and edge-edge (EE)
cases. These two cases are detected by performing VF and
EE elementary tests, which reduce to solving cubic equa-
tions given the linear continuous motion between two dis-
crete time steps [Pro97].

BVHs are widely used to accelerate the performance of
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Figure 2: These images are from the breaking dragon
benchmark consisting of 252 K triangles, the most challeng-
ing benchmark in our test sets. Our method spends 54 ms
for CCD including self-collisions and achieves 12.5 times
improvement over a serial CPU-based method.

CCD methods. Some of the commonly used types of bound-
ing volumes (BVs) include spheres, axis-aligned bound-
ing boxes (AABBs), oriented bounding boxes (OBBSs),
etc [TKH 05,LMO03]. We use the AABB representation be-
cause of its fast update method, simplicity, and wide ac-
ceptance in various collision detection methods [TKH].
Given a BV noden of a BVH, we use notations df(n) and
R(n) to indicate the left child and right child nodes of the
noden. As models are deforming, we have to update BVHs
of such deforming models. We update BVHs based on a se-
lective restructuring method, which reconstructs small por-
tions of BVHSs that may have poor culling ef ciency and re-
ts the rest of portions of BVHSs by traversing the BVH in a
bottom-up manner [YCMO07, TKHD5]. We also combine the
selective restructuring method with a lazy BV construction
method.

3.2. Common BVH-based Collision Detection

3

the BVH-based CD is rather straightforward. One naive ap-
proach is to divide the pairs stored in the collision test pair
gueue into available threads. Then, each thread performs
the BVH traversal and adds collision test pairs into its own
gueue without any locking. However, threads have to use a
locking mechanism for reconstructing a BV of a node. We
found that this naive method shows poor scalability (Fig. 7).
Two issues cause this low performance. The rst one is that
contacts among objects occur in localized regions of objects
and processing a pair may generates a high number of ad-
ditional pairs or may terminate soon after. This high vari-
ance of the computational workload associated with each
pair requires frequent redistributions of computational work-
load for a load-balancing among threads and results in a high
overhead. The second one is that using locks to avoid simul-
taneous reconstructions on the same node serializes these
multiple threads and hinders the maximum utilization of
multi-core architectures. In this paper, we propose a scalable
parallel CD method that addresses these issues.

3.3. Overview of Our Approach

At a high level, our HPCCD method consists of two parts
(see Fig. 3): 1) CPU-based BVH update and traversal with
lazy BV reconstructions and 2) GPU-based VF and EE ele-
mentary tests.

Our HPCCD method rst updates a BVH of a deforming
model by re tting the BVs. Then, we perform the BVH
traversal and culling by using multiple CPU threads. During
the BVH traversal, we also perform selective BV reconstruc-
tion method in a lazy manner. In order to design a highly
scalable algorithm, we decompose the BVH traversal into
inter-CD task unitswhich enable a lock-free parallel algo-
rithm in the main loop of our collision detection method.

For BVHs of deforming models, we merge these BVHs These inter-CD task units are guaranteed to access differ-
into a BVH and then perform our CCD method with the ent sets of nodes and do not require any locking mechanism
merged BVH. In this case, inter-collisions among multiple for lazy BV reconstructions on BV nodes. We also propose
objects and self-collisions within each object can be com- a simple dynamic task reassignment method for high load-
puted by performing self-collision detection with the merged balancing among threads by partitioning inter-CD task units

BVH [TKH 05]. We initially perform collision detection be-
tween two child nodes of the root node of the BVH. To
do that, we create aollision test pairconsisting of these
two nodes. Then, we push the pair into a queue, caltéd
lision test pair queueln the main loop of the CD algo-
rithm, we dequeue a pa(n;m) consisting of BV node#
andm from the queue and perform a BV overlap test be-
tween two BV nodesn and m, of the pair. If there is an
overlap, we re ne two BV nodes with their two child BV
nodes and create four different collision pais(n); L(m)),
(L(n); R(M)), (R(N); L(m)), and(R(n); R(m)). If we have to

nd self-collisions within nodesn and m for dynamically
deforming models, we also create two additional collision
pairs, (L(n); R(n)) and (L(m);R(m)). When we reach leaf
nodes during the BVH traversal, we perform the VF and EE
elementary tests between features (e.g., vertex, edges, an
faces) associated with the leaf nodes. We continue this pro-
cess until there is no more collision pairs in the queue.

Issues of parallelizing the BVH-based CD:Parallelizing
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of athread to other threads. When reaching leaf nodes during
the BVH traversal, we send potentially intersecting triangles
contained in the two leaf nodes to GPUs and perform ele-
mentary tests constructed from the triangles using GPUs. In
order to minimize the time spent on sending data, we asyn-
chronously send the mesh information to GPUs during the
BVH update and traversal. We only send colliding primi-
tives and their contact information (e.g, a contact point and
normal) at the rst ToC to CPUs after nishing the tests.

4. Inter-CD based Parallel CCD

In this section, we explain our novel decomposition and task
reassignment methods for the CPU-based hierarchy traversal
and culling of the HPCCD method.

%e de ne a few terminologies to describe our method. We

de ne aninter-collision test pair setlICTpg(n), to denote
all the collision test pairs generated in order to nd inter-
collisions between two child nodes of a nodeWe de ne
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Figure 3: This gure shows the overall structure of the
HPCCD method. It performs the BVH update and traversal
at CPUs and the elementary tests at GPUs.

two nodes to have parent-child relationshipf one node is
in the sub-tree rooted at the other.

4.1. Inter-CD based Decomposition

Our task decomposition method for the parallel CPU-based

BVH traversal is based on task units of an inter-collision de-
tection, inter-CD. Each inter-CD task unit processes colli-
sion test pairs represented iy Tpg(n) of a noden. To as-
sign task units to each CPU thread, we push a noao
atask unit queueand associate the queue with the thread.

Inter-CD task unit has two phases: 1) setup phase and 2)

the BVH traversal phase performing BV overlap tests. In
the setup phase of an inter-CD task, we rst fetch a node,
ns, from its task unit queue and re ne the node into its two
child noded (ng) andR(ng). If we have to perform the self-

collision detection, we push those two child nodes that will

generate other inter-CD task units into the task unit queue.

We also create acheduling queuéor dynamic task reas-
signment for a load-balancing, which will be explained in
Sec. 4.3.

After the setup phase, we perform the BVH traversal phase
During the BVH traversal phase, we use a collision test

pair queue as used in the common BVH-based traver-

sal explained in Sec. 3.2. We assign a collision test pair
(L(ng); R(ng)) into the collision test pair queue. Then, we
fetch a pair consisting of two nod@sand m from the col-
lision test pair queue and perform a BV overlap test be-
tween two BV nodes and m of the pair. If there is a BV
overlap, we re ne both of those two nodes irt¢n), R(n),
L(m), andR(m). Then, we construct four collision test pairs,
(L(n); L(m)), (L(n); R(m)), (R(n); L(m)), and(R(n); R(m)),

Low-level nodes

Figure 4: This gure shows high-level and low-level nodes
given four available threads. The right portion of the gure
shows an initial task assignment for the four threads.

Serial CCD method: Before we explain our HPCCD
method, we rst explain how to perform CCD with a sin-
gle thread based on inter-CD task units. Given a BVH
whose root node isRr, we perform an inter-CD task unit,
ICTpg(NR), of the nodeng. At the end of processing the
task unit ofICTpg(nR), the collision test pair queue is empty.
However, the task unit queue may have two nodes, which are
two child nodes ofhr. We fetch a node), from the task unit
gueue and perforfCTpg(n). We continue this process until
there is no node in the task unit queue. Then, the result queue
contains all the self- and intra-collisions among the original
deforming models. An important property in this serial CCD
method is that any pair of nodes in the task unit queue do not
have the parent-child relationship.

Note that our serial CCD algorithm based on inter-CD task
units is constructed by simply reordering the processing or-
der of collision test pairs of typical BVH-based CD methods

explained in Sec. 3.2.

4.2. Initial Task Assignment

Each thread is initialized with a nodte If nodes assigned to
threads satisfy the disjoint property, we do not need to use
expensive locking mechanisms to prevent multiple threads
from attempting to reconstruct the same BV node for a lazy
BV reconstruction during the BVH traversal.

To guarantee that nodes assigned to threads do not have any
parent-child relationship and thus satisfy the disjoint prop-
erty, we compute such nodes by maintaining a front while
we traverse the BVH from its root node in the breadth- rst

order (see Fig. 4). If the size of the front is same as the num-

and push them in the collision test pair queue. We continue ber of available threads, we stop the BVH traversal and as-
this process until we reach leaf nodes. If we reach leaf nodes, sign each node in the front to each thread. We refer to those
we perform exact VF and EE elementary tests between fea- nodes and all the nodes in the sub-trees rooted at those nodes
tures associated with the leaf nodes by using GPUs. If there aslow-level nodesvhile all the other nodes are referred to

is any collision, we put the collision result into result
buffer.

Disjoint property of inter-CD task units: During process-

ing an inter-CD task unit of a node, we create and test
various collision test pairdCTpg(n), of nodes that are in the
sub-tree rooted at the nodelf there is no parent-child rela-
tionship between two nodes, sagndm, we can easily show
that a set of accessed nodes during perforni@itg(n) is

disjoint from another set of accessed nodes during perform-

ing ICTpg(m). We will utilize this disjoint property to design
an ef cient parallel CCD algorithm (Sec. 4.2 and Sec. 4.3).

ashigh-level nodesAn example of low-level and high-level
nodes for four threads is shown in Fig. 4.

In the same manner with the serial CCD method described in
Sec. 4.1, each thread nds collisions that occur in a subtree
of the node that is initially assigned to the thread. Once each
thread nishes its computation, we process inter-CD task
units of high-level nodes. First, we process parent nages,
andng in the case of Fig. 4, of initially assigned nodes to
each thread. We wait until the processing of inter-CD task
units of two nodes, andnz nishes and then process their
parent noden;. While processing high-level nodes, we do
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not add child nodes of those nodes to the task unit queue After distributing the computational workload, the distribu-
since we already processed inter-CD tasks of those child tion threadyis; sends wake-up messages with the partitioned
nodes. nodes to the requesting threads. Once a requesting thread
trequestreceives the wake-up message, the thread pushes the
received node into its task unit queue and resumes its com-
putation by performing inter-CD task units. Pseudo-code of
our parallel CCD algorithm based on inter-CD task units is
shown in Listing 1. Note that we do not perform any syn-
chronization nor locking in the main collision detection loop.

In this simple task assignment method, we can traverse the
BVH, perform the overlap tests, and invoke lazy BV re-
constructions, if necessary, without any locking. However,
a thread can nish its assigned task units much earlier than
other threads because of the localized contacts among ob-
jects. In this case, it is desirable to divide task units of a
thread to the thread nishing its task to fully utilize all the
availablep threads. For this, we propose a dynamic task re- Perform_Self_CD (node n) {
assignment in the next section. TaskUnit_Q < n;

while (! TaskUint_Q.Empty ()) {

4.3. Dynamic Task Reassignment )
n < TaskUint_Q.Dequeue ();

Suppose that a thread nishes its computation and there is

no more nodes left in the task unit queue. We will refer to
this thread as @equesting threadrdquest In order to uti-
lize this requesting threagquess We detect another thread
tgist called adistribution threadthat can give its computation
workload to the requesting threadquest At a high level,

we choose to distribute an inter-CD task unit that may have
the highest computation workload to the requesting thread.
More speci cally, we choose a distribution threggl; with

the highest number of triangles associated with the front
node in its task unit queue among threads. Then, the distri-
bution threadig; gives the front node in its task unit queue
to the requesting thredgquest

The main rationale of this approach is as follows. Nodes in
the task unit queue represent inter-CD task units and can
be distributed to other threads, since there are no parent-
child relationships among these nodes. The front node in the
task unit queue in each thread is likely to cause the high-
est computational workload among nodes in the queue given

if (n has child nodes) {
TaskUint_Q < L(n) and R(n);
Pair_Q < (L(n),R(n));

}

while (! Pair_Q.Empty ()) {// Main CD loop
Pair < Pair_Q.Dequeue () ;
Perform lazy reconstructionfor nodes of
Pair;

if (IsOverlap (Pair)){
if (IsLeaf (Pair) )
Perform elementary tests;
else
Pair_Q < Refine (Pair);
}
}

if (! SchedulingQ .Empty ())
Distribute its work to the requesting
thread;

the breadth- rst order traversal of the BVH. Moreover, we
expect that there will be more computational workload of
processing an inter-CD task unit of a node as the number
of triangles associated with the sub-tree rooted at the node }
is higher. We found that this simple dynamic task reassign-
ment method works quite well in the tested benchmark and
achieves up to a 7 times performance improvement by using
8 CPU-cores compared to using a single CPU-core.

Request to a distribution threadnd sleep;

Listing 1: Pseudocode of HPCCD method

4.4. Parallelizing an Inter-CD Task Unit

Suppose that a requesting threaguestchooses a distribu- During processing high-level nodes, the number of inter-CD
tion threadtyis;. To request the distribution of computation task units that can run in parallel is smaller than the number
workloads trequestplaces a request to the scheduling queue of available threads. In order to fully utilize all the avail-
of the threadtyist. To place the request, a locking to the able CPU threads, we propose an algorithm that performs an
scheduling queue is required since other threads may attemptinter-CD task unit in a parallel manner.

to access the same scheduling queue to place their request

S . . .
After placing the requestequestsleeps. Our method is based on a simple observation: we do not per-

form many lazy BV reconstructions while processing high-
In each thread, we check whether its own scheduling queue level nodes since we already traversed many nodes and per-
is empty or not by looking at its size right after nishing all  formed lazy reconstructions during processing inter-CD task
the collision test pairs and before performing another inter- units of low-level nodes. Therefore, we choose to use a lock-
CD task unit. If there are no requests in the queue, the thread ing mechanism for lazy BV reconstructions. Since recon-
continues to process another inter-CD task unit by fetch- structions of BVs happen rarely during processing high-level
ing a node from its task unit queue. If there are requests in nodes, there is a very low chance of a thread waiting for a
the scheduling queue, we distribute its computational work- locked node. By using the locking mechanism, we can arbi-
load stored in the task unit queue to the requesting threads. trarily partition the pairs of the collision test pair queue ikto
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a segment are empty or lled, the segment has the state of
"empty" or "full" respectively. Otherwise, it has the "partial”
state. The TIQ has a window that lookscatonsecutive seg-
ments to see whether they are full and ready to be transfered
from main memory to the video memory, wherés set to
be the one fourth of the maximum size of the TIQ. Also,
the TIQ has a front pointer that indicates a next available
empty segment. Initially, the master thread gives two empty
segments to each CPU thread. Once a CPU thread requests
Figure 5: This gure shows two frames during the N- @ new e_mpty segment from the master thread, the mgster
body simulation benchmark with two different model com- thréad gives the empty segment referred by the front pointer
plexities: 34 K and 146 K triangles. Our method spends @nd updates the position of the front pointer by nding an
6.8 ms and 54 ms on average and achieves 11.4 times €Mpty segment sequentially in the TIQ. The master thread

and 13.6 times performance improvements for two different &/S0 maintains &PU task queu¢GTQ) that holds elements,
model complexities. each of which contains segments that has been sent to the

GPUs, a state variable indicating whether the GPU nishes
processing the elementary tests of the sent segments, and an

available threads. For partitioning, we sequentially dequeue qotpyt buffer that can contain the contact information at the
and assign a pair intothreads in a round robin fashion. We st 1oC.

choose this approach since collision test pairs located closely
in the queue may have similar geometric con gurations and As each CPU working thread performs the BVH traversal,
thus have similar computation workload during processing it adds two triangle indices to one segment from the two as-

collision test pairs. signed segments. When the segment does not have additional
space to hold any more triangle indices, the thread sets the
5. GPU-based Elementary Tests state of the segment to be "full". Then, the thread asks a new

segment from the master thread. Meanwhile, the thread does
Once we reach leaf nodes of the BVH, we perform the VF not wait for the master thread and asynchronously continues
and EE elementary tests. To perform VF and EE elementary to perform the BVH traversal with the other segment. In this
tests between two potentially colliding primitives at GPUs, way we can hide the waiting time for a new empty segment
we need to send necessary information to the video memory that has been requested to the master thread.
of GPUs. Since sending data from main memory of CPUs
to the video memory of GPUs can take high latency, we
send the mesh information to GPUs during the BVH update
and traversal asynchronously in order to hide the latency of
sending the data. Then, when we reach leaf nodes of BVHs
we send two triangle indices of two potentially intersecting
triangles. At the GPUs, we construct the VF and EE tests
from two triangles referred by the two indices and solve cu-
bic equations to compute the contact information at the rst
ToC.

Procedure of the master thread: The master CPU-GPU
communication thread performs the following steps in its
main loop. The rst step is to look at the consecutive seg-
ments in the TIQ's window. If there are multiple consecutive
" "full" segments, we send these consecutive "full* segments
to GPUs with one data sending API call and push them in
one element of the GTQ. The reason why we send consecu-
tive segments is to reduce the number of calls of data send-
ing API, which has a high kernel call overhead [NVIO8].
We then update the window position by sliding it right af-
ter the transmitted consecutive segments in the TIQ. Note
that any "partial" segments are not sent and will be checked
In our HPCCD framework, multiple CPU threads gener- again for the transmission when the window contains these
ate elementary tests simultaneously. For sending data from segments later. When a GPU nishes processing all the el-
CPUs to GPUs, an easy solution would be to let each CPU ementary tests constructed from the segments received, the
working thread send two triangle indices to GPUs. How- GPU sets the state variable of the element of the GTQ to be
ever, we found that this approach requires a high overhead "data ready" and stores all the colliding primitives in the out-
since GPUs have to maintain individual device contexts for put buffer of the queue element. As a next step, the master
each CPU thread [NVIO8]. Instead, we use a master CPU- thread goes over all the elements in the GTQ and remove el-
GPU communication threathaster (see Fig. 3). Each CPU  ements that have the "data ready" state. We also update the
thread requests the master thread to send the data to GPUstesult buffer that contains the contact information at the rst
The overall communication interface between the CPUs and ToC with output buffers of these removed elements. Then,
GPUs is shown in Fig. 3. we make segments of these "data ready” elements to have
the "empty" state in order to be reused for a next request of
"empty" segments. The nal step of the master thread is to
process requests of "empty" segments from CPU threads.

5.1. Communication between CPUs and CPUs

The master thread maintaingréangle index queugTIQ).

The TIQ consists of multiple (e.g., 128) segments, each of
which can contain thousands (e.g., 2K) of a pair of two tri-
angle indices. Each segment can have three different states:Load balancing between CPUs and GPUsWhen we use
"empty", "full", and "partial" states. If all the elements of alow-end GPU and high-end CPUs, we found that the GPU
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may not process all the elementary tests generated from
these CPU-cores, thus requiring additional GPUs to load-
balance and achieve a further performance improvement.
Without having additional GPUs, we can load-balance the

elementary tests across both the CPUs and GPUs to achieve

an additional performance improvement by using CPUs to

Model Tri. (K) | Image| Avg. CCD time (ms)
Cloth simulation 92 Fig. 1 23.2
Breaking dragon 252 | Fig. 2 53.6
LR N-body simulation| 32 Fig. 5 6.8
HR N-body simulation 146 | Fig.5 53.8

Table 1: Dynamic Benchmark Models

process the elementary tests instead of generating and send-

ing the elementary tests to the GPUs. To do this, a CPU
working thread checks whether the GTQ's size is bigger than
the number of GPU cores, right before the CPU thread n-
ishes to Il a segment and requests an "empty" segment. If
the GTQ's size is bigger than the number of GPU cores, we

assume that the GPUs are busy and cannot process all the
segments produced by CPUs. In this case, the CPU thread

processes the half of the elementary tests of the "full" seg-
ment and continues to performs the BVH traversal until it
lIs the half-empty segment. Once the segment becomes full
again, the CPU thread checks the queue size of GTQ and
performs the same procedure again.

6. Implementation and Results

We have implemented our HPCCD method and tested it
with two different machines. The rst one is an Intel Xeon

desktop machine with two 2.83 GHz quad-core CPUs and
a GeForce GTX285 GPU. The second one is an Intel i7
desktop machine with one 3.2 GHz quad-core CPU and two
Geforce GTX285 GPUs. The Intel i7 processor supports the
hyper-threading [CS99]. We will call these two machines

8C1G (8 CPU-cores and 1 GPU) and 4C2G (4 CPU-cores

is spinning (Fig. 1). This benchmark consists of 92 K tri-
angles and undergoes severe non-rigid deformations. In our
second benchmark, a bunny collides with a dragon model.
Then, the dragon model breaks into numerous pieces (Fig.
2). This model has 252 K triangles. Our nal benchmark
s a N-body simulation consisting of multiple moving ob-
jects (Fig. 5). We compute two different versions with differ-
ent model complexities of this benchmark: a high-resolution
(HR) version has 146 K triangles and a low-resolution (LR)
has 32 K triangles. Each object in this benchmark may un-
dergo a rigid or deformable motion and objects collide with
each other and the ground. These models have different
model complexities and characteristics. As a result, they are
well suited for testing the performance of our algorithm.

6.1. Results

We measure the time spent on performing our HPCCD in-
cluding self-collision detection with two different machines.
We achieve the best performance with the 4C2G machine,
the four CPU-cores machine with two GPUs.

In the 4C2G machine, the HPCCD method spends 23.2 mil-
liseconds (ms), 53.6 ms, 6.8 ms, and 53.8 ms on average for

and 2 GPUs) machines for the rest of the paper. We use thethe cloth simulation, the breaking dragon, and LR/HR N-

OpenMPlibrary [DM98] for the CPU-based BVH traversal
and CUDA [NVI08] for the GPU-based elementary tests.
We also use a feature-based BVH usiRgpresentative-
Triangles[CTMO08] in order to avoid any redundant VF and
EE elementary tests.

Parallel BVH update: Before we perform the CCD using a
BVH, we rstre t BVs of the BVH. Our algorithm traverses
the BVH in a bottom-up manner and re ts the BVs. To de-
sign a parallel BVH re tting method utilizing threads, we
compute R nodes in a front as we did for the initial task as-
signment of inter-CD task units to threads in Sec 4.2. Then,
we assign the rsk nodes stored in the front to each thread
and then each thread performs the BV re tting to the sub-
tree rooted at the node. Since the BVH is unlikely to be bal-
anced, a thread can nish its BV re tting earlier than other
threads. For the thread nishing its re tting, we assign the
next available node in the front to the thread. During the
BVH traversal, we identify and selectively restructure BVs
with low culling ef ciency. To do that, we use a heuristic
metric proposed by Larsson and Akenine-Moller [LAMO6].
We perform a lazy BV reconstruction by using a simple
median-based partitioning of triangles associated with the
node.

Benchmarks: We test our method with three types of dy-
namic scenes (see Table 1). The rst benchmark is a cloth
simulation, where a cloth drapes on a ball and then the ball
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body simulations respectively; we will report results in this
benchmark order for the rest of the tests. These computa-
tion times translate to about 43, 19, 148 and 19 frame per
seconds (fps) for the four benchmarks respectively. Com-
pared to using a single CPU-core, we achieve 10.4, 12.5,
11.4, and 13.6 times performance improvements. We also
show the performance of HPCCD with different numbers of
CPU threads and GPUs with the two different machines (see
Fig. 6).

We measure the scalability of our CPU-based BVH update
and traversals of our HPCCD method as a function of CPU
threads (e.g., 1, 2, 4, and 8 threads) without using GPUs in
the 8C1G machine (see Fig. 7) with all the benchmarks. The
CPU part of our HPCCD method shows 6.5, 6.5, 6.4, and
7.1 times performance improvements by using 8 CPU-cores
over a single CPU-core version in the four benchmarks re-
spectively. We achieve a stable and high scalability near the
ideal linear speedup across our benchmarks that have differ-
ent model complexities and characteristics. This high scal-
ability is due to the lock-free parallel algorithm used in the
main loop of the collision detection.

6.2. Analysis

Our HPCCD method consists of four components; 1) BV re-
tting, 2) parallel CCD with low-level and high-level nodes,
3) performing elementary tests, and 4) other serial compo-
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=1 formance improvements by using 8 CPU-cores over a single
LR N-body simulation CPU-core version for the rst and second components re-

i spectively. The low scalability of the rst BV re tting com-
ponent is caused by its small workloads of the BV re tting
operations. Therefore, the overhead of our simple load bal-
ancing methods and frequent needs for load balancing lower

[ ] B I l l the scalability. We also measure the scalability of the com-

28 - - bination of the second and the third components; it shows
Without GPU  One GPU  Without GPU  One GPU Two GPUs 7.5 times performance improvement by using 8 CPU cores.

HR N-body simulation Since the portions of the second and the third components

20 : are dominant in the CCD, we achieve a high scalability in the
15 S whole CCD process despite the low performance improve-

ment of the BV re tting component.

: We also measure the scalability of the third component of
o Lum [ | - [ | B performing elementary tests as a function of the number of
Without GPU ~ One GPU ~ Without GPU ~ One GPU  Two GPUs GPUs used in the 4C2G machine. We perform the CCD by
using only a single CPU-core and measure the tifaespent
on performing elementary tests after serializing the compo-
nents of the HPCCD. We then measure how much the overall
CCD time is reduced from using a single CPU-core to using
GPUs for the elementary tests. We refer to the reduced time
: asT;. The scalability of the third component can be com-
10 = : || | | puted by a simple equatiofie=(Te Tr). According to this
o - m. i equation, we achieve 2.8 times and 4.6 times performance
Without GPU One GPU  Without GPU One GPU Two GPUs . . .
improvements for the third component by using one GPU
and two GPUs respectively on average in the benchmarks.
: However, we expect to achieve a higher scalability when us-
15 : ing multiple CPUs, since we can generate more elementary

o

Cloth simulation

Breaking dragon
20

10 | tests ef ciently and thus utilize GPUs better.

5 — Segment size in the TIQ:The size of a segment in the TIQ

o | mm [ | i mm . . affects the performance of the HPCCD, since it determines
Without GPU ~ One GPU ~ Without GPU ~ One GPU  Two GPUs the granularity of the communications from CPUs to GPUs

Figure 6: We measure the performance of our HPCCD with and between the master and slave threads. A small segment
four different benchmarks in two machines as we vary the SiZ€ may lead to a high communication overhead between
numbers of CPU threads and GPUs. We achieve 10 times to the master and slave threads. On the other hand, a large seg-

13 times performance improvements by using the quad-core MeNt sizé may cause GPUs to be idle at the"beg'inning of the
CPU machine with two GPUs. BVH traversal, since GPUs should wait for "full" segments

from CPUs. We found that 2K entries for a segment show the
best performance for the tested benchmarks in the tested two
nents and miscellaneous parts (e.g., setup of threads). In themachines. However, bigger entries (e.g., 4K to 16K entries)
serial version of the HPCCD using only one CPU-core, these show only minor (e.g., 2 %) performance degradation.
four components take about 3%, 19%, 77%, and 1% on av- . . . o
erage in our tested benchmarks respectively: the results will leltatl_on: Our algorithm has certain limitations. Note_ that
be reported in the order each component appeared above fort€ Serial part of the HPCCD method takes 6.46% with the
the rest of the section. By of oading the elementary tests to 4©2G machine. According to the Amdahl's law [CS99], we

GPUs and parallelizing other components except for the se- &N achieve only 15 times more improvement in addition to
fial part, we were able to achieve up to a 13.6 times per- the 13 times performance improvement we have achieved by

formance improvement. By using the 4C2G machine, the using the 4C2G machine, although we would use unlimited

four components take about 12%, 81%, not-available, and resource of CPUs and GPUs. Also, our method can detect a
6.46% respectively. Since the time spent on performing el- ¢aS€ when GPUs do not keep up with CPUs and use CPUs
ementary tests in GPUs are overlapped with the CPU-based t© perform elementary tests to achieve a higher performance.
BVH traversal, we could not exactly measure that compo- However, our current algorithm does not attempt to achieve a

nent. However, that component takes less than or equal to Nigher performance when GPUs are idle. We can implement
that of the CPU-based BVH traversal. processing inter-CD task units in GPUs using the CUDA and

perform the inter-CD tasks in GPUs when GPUs are idle.
Scalability of different components:We measure the scal-  However, it requires further research to map the hierarchical
ability of the rst and the second components in the 8C1G traversal well in the streaming GPU architectures. Also, we
machine without using the GPU. We achieve 3.0 and 6.5 per- mainly focus on the ef cient handling of large deforming

submitted to COMPUTER GRAPHICBorum(7/2009).



D. Kim et al. / HPCCD: Hybrid Parallel Continuous Collision Detection using CPUs and GPUs 9

fﬁg " HR-N-body -e-Cloth - than their method even though they would use two GeForce
Eg | Dragon ‘¢LR-N-body | GTX 285 GPUs that our method was tested. Moreover, they
=5 |#*Naive - ',,ﬁ reported that the performance of their method is limited by
24 e B o — the data read-back performance. Although the performance
£3 — of their method would have been improved by using a re-
éi :M; cent GPU, data read-backs has not been much improved in
- 1 2 3 4 5 6 4 8 past years (e.g., about 3 times improvement in terms of data
Number of Threads bandwidth for three years in the past [NVIO8]). They re-

Figure 7: This gure shows the performance improvement ported that the data read-back from a GPU and other con-
of our HPCCD method as a function of the number of CPU- stant costs even for small models span between 50 ms and
cores without using GPUs over using a single CPU-core. 60 ms at least, which is even higher than or comparable to
The gray line, marked by triangles, shows an average per- the whole computation time of our HPCCD method tested
formance improvement of the naive approach described in with large-scale deforming models.

Sec. 3.2 with all the tested benchmarks. We also compare our method with a CPU-based parallel

CCD method proposed by Tang et al. [TMTO09]. This method
models with consisting of tens or hundreds of thousands of also achieved a high performance improvement by using
triangles. If the model complexity is small or we have to 16 CPU-cores. However, our method achieves about 50%
handles models consisting of a small number of rigid bodies, and 80% higher performance with the same tested bench-
our method may not get a high scalability since there are not marks: the cloth simulation and LR N-body simulation re-

many inter-CD task units that we can parallelize. spectively. Since the portion of elementary tests is larger in
the LR N-body simulation, our hybrid method achieves a
6.3. Comparisons higher performance improvement with the LR N-body sim-

ulation. Also, according to the Google Product Sedreind

its reported lowest prices for CPUs and GPUs, the price of
the 16 CPU-cores (USD 7200) used in [TMTO09] is 4.4 times
higher than that of the CPU (USD 995) and two GPUs (USD
640) of our 4C2G machine. Therefore, our method achieves
about 7 times higher performance per unit cost.

It is very hard to directly compare the performance of our
method over prior methods. However, most prior approaches
use either GPUs [GRLMO03, KP03, HTG04, SQI&] or
CPUs [LLO2, FF04, TMTO09] to accelerate the performance
of CCD. One distinct feature of our method over prior meth-
ods is that it maps CPUs for the BVH traversal and GPUs
for performing elementary tests. Since these two different
components, the traversal and elementary tests, are more
suitable to CPUs and GPUs respectively, we decompose the
computation of CCD in such a way that it can fully exploit
the multi-core architectures of CPUs and GPUs. Therefore,
our method achieved more than an order of magnitude per-
formance improvement over using a single CPU-core and
showed interactive performance for large-scale deforming
models.

7. Conclusion and Future Work

We have presented a novel, hybrid parallel continuous colli-
sion detection method utilizing the multi-core CPU and GPU
architectures. We use CPUs to perform the BVH traversal
and culling since CPUs are capable of complex branch pre-
dictions and ef ciently support irregular memory accesses.
Then, we use GPUs to perform elementary tests that reduce
to solving cubic equations, which are suitable for the stream-
We compare our method with the current state of the art ing GPU architecture. By taking advantage of both of CPUs
technique proposed by Sud et al. [SGXB]. This method and GPUs, our method achieved more than an order of mag-
supports the general polygonal models and CCD including hitude performance improvement by using a four CPU-core
self-collision. We contacted authors of this technique, but and two GPUs over using a single CPU-core. This resulted in
we were not able to get the binary of this method. There- an interactive performance for CCD including self-collision
fore, we compare results of our method with their results detection among various deforming models consisting of
reported in their paper. Note that this comparison is rather tens or even hundreds of thousand triangles.

unfair, since they used a GeForce 7800, 3-years old graph-
ics card. Since their tested benchmarks are different from
ours, we measure an average ratio of model complexities
of tested benchmarks to the CCD times spent for process-
ing those benchmarks. The ratio of our method is 107 times
higher than that of their method. This means that our method
can process 107 times bigger model complexity given a unit
time or run 107 times faster given a unit model complexity
than their method. Also, according to the GPU performance
growth data from the GeFroce 7800 to GeForce GTX 280 for
the last 3 years [NVI08], the performance has been improved
about 6 times. Therefore, based on this information, we con-
jecture that our method is about 5 times to 10 times faster Y http://www.google.com/products

There are many avenues for future work. In addition to ad-
dressing our current limitations, we would like to extend
our current HPCCD method to exploit the Larrabee archi-
tecture [SCS08], which provides the 16-wide SIMD func-
tionality. We would also like to test the scalability of our
method with more CPUs and GPUs. Finally, we would like
to design parallel algorithms for other proximity queries in-
cluding minimum separation distance and penetration depth
queries.
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