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Abstract

Recent improvements in architectural supports for vir-

tualization have extended traditional hardware page walk-

ers to traverse nested page tables. However, current two-

dimensional (2D) page walkers have been designed under

the assumption that the usage patterns of guest and nested

page tables are similar. In this paper, we revisit the archi-

tectural supports for nested page table walks to incorporate

the unique characteristics of memory management by hy-

pervisors. Unlike page tables in native systems, nested page

table sizes do not impose significant overheads on the over-

all memory usage. Based on this observation, we propose

to use flat nested page tables to reduce unnecessary memory

references for nested walks.

A competing mechanism to HW 2D page walkers is

shadow paging, which duplicates guest page tables but pro-

vides direct translations from guest virtual to system physi-

cal addresses. However, shadow paging has been suffering

from the overheads of synchronization between guest and

shadow page tables. The second mechanism we propose

is a speculative shadow paging mechanism, called spec-

ulative inverted shadow paging, which is backed by non-

speculative flat nested page tables. The speculative mech-

anism provides a direct translation with a single memory

reference for common cases, and eliminates the page ta-

ble synchronization overheads. We evaluate the proposed

schemes with the real Xen hypervisor running on a full sys-

tem simulator. The flat page tables improve a state-of-the-

art 2D page walker with a page walk cache and nested TLB

by 7%. The speculative shadow paging improves the same

2D page walker by 14%.

1 Introduction

As system virtualization has been widely used for pub-

lic cloud computing as well as corporate server consolida-

tion, recent processor designs have been extending their

architectural supports for virtualization [3, 19]. One of

such architectural enhancements for virtualization is to sup-

port two-dimensional (2D) page table walks, which can tra-

verse both guest and nested page tables with a hardware

page table walker. In virtualized systems, a guest virtual

address is translated into a guest physical address with a

per-process guest page table, and the guest physical ad-

dress must be translated to a system physical address with a

per-VM nested page table. Translation Look-aside Buffers

(TLBs) store direct translations from guest virtual to system

physical page numbers, but for each TLB miss, both page

tables must be traversed.

An alternative way to such hardware 2D page walks for

memory virtualization is a software-based approach called

shadow paging [4]. The hypervisor maintains a shadow

page table for each guest process, and the shadow page table

contains a direct mapping from guest virtual pages to sys-

tem physical pages. Although shadow paging allows TLB

misses to be served by walking a single page table, the most

significant performance overhead of shadow paging is hy-

pervisor interventions to reflect any changes of a guest page

table to the corresponding shadow page table. Hardware 2D

page table walkers eliminate the overhead of such costly hy-

pervisor interventions [4].

However, the current hardware supports for nested page

table walks extend traditional HW-based multi-level page

table walkers. Both of the guest and nested page tables

are organized as multi-level page tables to reduce memory

overheads. With four-level page tables commonly used for

64-bit address spaces, a 2D page table walk takes six times

more references than a native page walk [8]. Such multi-

level page tables are designed for memory usage patterns

for processes in native OS systems, to reduce memory foot-

prints for page tables. However, multi-level nested page ta-

bles may not be able to reduce the memory requirement for

nested page tables effectively. The number of virtual ma-

chines (VMs) is often very limited with only several or tens

of VMs in a virtualized system. Furthermore, each virtual

machine uses much of the initially declared guest physical

address space, which is much smaller than the virtual ad-

dress space of a process.

In this paper, we revisit the design space of hardware-

assisted nested paging supports, by considering the unique

characteristics of memory usages and allocation patterns for



virtual machines. As traditional multi-level page tables do

not save memory space significantly for nested page tables

in virtualized systems, we propose to use flat nested page

tables. By eliminating unnecessary levels, memory refer-

ences for TLB misses can be reduced significantly.

However, flat nested page tables do not reduce the over-

head of multiple references to traverse guest page tables.

Traditionally, hashed inverted page tables reduce the num-

ber of memory references for TLB misses. For nested ad-

dress translations in virtualized systems, an inverted page

table entry can contain a direct mapping from a guest virtual

page to a system physical page. However, such an inverted

page table for virtualization has the same performance over-

head as shadow paging. Whenever a guest page table entry

changes, the hypervisor must intervene and update the in-

verted page table. The second mechanism we propose is a

speculative mechanism, called speculative inverted shadow

page table (SpecISP) to eliminate the overhead of synchro-

nizing the inverted page table with guest page tables. With

the speculative mechanism, each TLB miss looks up the

speculative inverted shadow page table, which should take

only a single memory reference for common cases. At the

same time, the flat page table is accessed to retrieve the cor-

rect mapping. A TLB miss is served speculatively, and must

be verified by the correct flat page table.

We evaluate the proposed reorganization of nested page

tables, and speculative shadow paging with a real hyper-

visor running on a full-system simulator. Flat page tables

improve a state-of-the-art HW 2D page walker with a page

walk cache and nested TLB by 7% on average for a set of

applications. Speculative inverted shadow paging can po-

tentially improve the same 2D page walker by 14%.

The rest of the paper is organized as follows. Section

2 describes hardware-assisted memory virtualization, and

discusses the prior work to improve the performance of ad-

dress translation for native and virtualized systems. Section

3 discusses the unique characteristics of VM memory allo-

cation policies, and presents the organization of flat nested

page tables. Section 4 presents the speculative mechanism

to support the inverted shadow page table without synchro-

nizations with guest page tables. Section 5 presents the ex-

perimental results, and Section 6 concludes the paper.

2 Background

2.1 Address Translation for VMs

To provide each VM with an isolated guest-physical ad-

dress space, virtualization requires two-level address trans-

lations. For each process running in a VM, a guest virtual

address (gVA) is translated into a guest physical address

(gPA) by a per-process guest page table, which is main-

tained by the guest OS in the VM. As multiple VMs share

the system memory, the guest physical address should be
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Guest Physical
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Figure 1: Address translation in virtualized systems

translated into a system physical address (sPA) with a per-

VM nested page table. Figure 1 depicts the address trans-

lation procedure for virtualized systems. Translation look-

aside buffers (TLBs) keep direct translations from guest-

virtual addresses to system-physical addresses. For a TLB

miss, either a SW or HW page table walker must traverse

two page tables to fetch the final translation to the system

physical page number. For HW-based page walkers used in

many commercial processors including popular x86 archi-

tectures, there are two common ways to translate a guest-

virtual page number to a system-physical page number for

TLB misses without any modification in guest OSes.

In a software-oriented method, for each process in guest

virtual machines, the hypervisor maintains a shadow page

table, which has a direct mapping between guest virtual to

system physical addresses as shown in Figure 1. Shadow

paging can be used with traditional page table walkers

which can traverse only a guest page table for a TLB miss,

and it does not require any extra architectural support for

virtualization. Each core has a register pointing the top-

level page table (CR3 in the x86 architecture). Whenever

a guest OS changes the page table register to a guest page

table, the hypervisor must intercept the change, and update

the register to the corresponding shadow page table. Per-

process page tables must be duplicated in the guest OS and

hypervisor, and furthermore, any change of a page table by

the guest OS requires a costly hypervisor intervention to up-

date the corresponding shadow page table. For applications

with frequent memory mapping changes, such synchroniza-

tion overheads between guest and shadow page tables cause

significant performance degradations [22]. In Section 4.1,

the overheads of shadow paging will be discussed in more

details. Shadow paging can potentially reduce memory ref-

erences for TLB misses, since it needs to walk a single page

table for a TLB miss. However, such synchronization over-

heads often exceed the benefits of reduced memory refer-

ences.

2.2 Hardware-Assisted Virtualization

Recent supports for two-dimensional walks eliminate the

need for shadow paging. Each core has both the page ta-

ble pointer to the current guest page table (gCR3 in x86),

and the page table pointer to the nested page table (nCR3

in x86). For a TLB miss, the HW walker traverses both of

the tables to get the final translation between guest-virtual
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Figure 2: Two-dimensional (2D) page walks for virtualization in x86 architectures

and system-physical page numbers. Such page table walk-

ers are designed to support the current multi-level page ta-

bles, whose formats are specified and fixed in the instruction

set architecture. The hardware walker assumes the same or-

ganization of page tables for guest and nested page tables,

although page granularity can differ modestly. Due to the

restricted page table organization for multi-level tables, a

TLB miss can cause many references to both page tables.

Figure 2 presents the address translation process for vir-

tualized systems in the 64-bit long mode of the x86 archi-

tecture. In the figure, the rectangles are guest page table

walks, and the circles are nested page table walks. Na-

tive systems require only 4 references to the page table for

each TLB miss, but virtualized systems requires 24 ref-

erences to the two tables by walking the tables in a two-

dimensional way. More generally, if guest page tables and

nested page tables are m and n levels, the 2D page walks

take mn+m+n references [8]. Due to the long latencies for

handling TLB misses, the performance of applications with

high TLB miss rates may be lower with the nested page ta-

ble walker than that with shadow paging [21, 22]. On the

other hand, the hardware-assisted 2D page walker performs

better than shadow paging for applications with frequent

updates on guest page tables. Furthermore, the hardware-

assisted mechanism does not require extra memory for du-

plicating page tables for guest processes.

To reduce the overhead of many memory references by

2D page walkers, some architectures use a page walk cache

(PWC), which is an extra hardware table to hold interme-

diate translations [3, 8]. For a TLB miss, instead of ac-

cessing the memory, a small hardware PWC is first checked

to find the necessary intermediate translations. As upper-

level intermediate translations, which cover a large memory

space in multi-level paging, exhibit high temporal localities,

a small number of entries in PWC may capture the working

set of the upper-level translations. In 1D PWC, intermediate

translations only for guest page tables are cached in PWC,

and in 2D PWC, intermediate translations both for guest and

nested page tables can be cached in PWC. Figure 2 shows

which translations can be cached in PWC. However, with

2D PWC, the limited PWC capacity must be shared by the

intermediate translations for 1D translation from guest vir-

tual to guest physical pages, and the 2D intermediate trans-

lations for nested page table walks.

Another hardware support to reduce the overhead of

walking 2D page tables is nested TLBs (NTLBs) [3]. The

nested TLBs hold the most recently used mappings from

guest-physical to system-physical pages, as shown in Fig-

ure 2. These two techniques, PWC and NTLB, are used to

reduce the overhead of multi-level nested page tables. The

overhead of multi-level page walks stems from the assump-

tion that nested page tables have the same requirements as

the traditional page tables used in native OS systems.

2.3 Related Work

Reducing the overheads of address translation has been

a critical aspect of optimizing memory hierarchy in na-

tive systems as well as virtualized systems. For native

systems, several studies have investigated schemes to re-

duce TLB misses or reduce the overheads of handling TLB

misses. Talluri et al. investigated several existing page

table schemes in a 64-bit system and proposed the clus-

tered page table which exploits contiguous memory allo-

cation [18]. Jacob and Mudge evaluated various memory

management units including software and hardware-based

mechanisms [15]. Barr et al. compared several designs of

caching intermediate page table entries in multi-level page

tables, evaluating various page walk caching policies [6].

Their another work, SpecTLB, proposed to use speculation

for address translation to reduce the page walk overhead [7].

It exploits the spatial locality available in memory alloca-

tion policies in commercial operating systems. Speculative



shadow paging proposed in this paper has been inspired by

their speculative mechanism for handling TLB misses, al-

though the purpose of using speculation greatly differs from

that for SpecTLB.

Virtualization has made efficient address translation crit-

ical for the overall system performance, as it requires both

guest and nested page table translations. Bhargava et al.

discussed page walk overheads in virtualized systems [8].

They showed that a small number of entries for nested page

tables are frequently reused due to spatial and temporal

localities. To take advantage of this characteristic, page

walk caches used in non-virtualized systems are extended

to cover nested page walks. In addition, they also evaluated

nested TLBs to further reduce memory references for nested

translations. Wang et al. proposed a selective address trans-

lation mechanism between software-based shadow paging

and hardware 2D page walk [22]. Considering the trade-

offs between shadow paging and HW 2D page walk, their

study proposed to use both software and hardware schemes

selectively, depending on application behaviors.

There are several studies to reduce TLB misses in chip

multiprocessors. Bhattacharjee et al. investigated the TLB

behaviors of parallel workloads [10]. Their study shows

that many TLB misses for each core are redundant and

predictable, if the cores run a shared-memory parallel ap-

plication. To exploit these characteristics, they proposed

prefetch mechanisms, which are based on the predicable

behaviors [11]. In addition, recent studies proposed the

shared last-level TLBs which are analogous to shared last-

level caches in multi-cores [9, 17]. Shared TLBs maximize

the caching efficiency of TLBs by sharing limited physical

resources among cores.

3 Flattening Nested Page Tables

In this section, we discuss the differences of memory

managements for virtual machines and for processes in na-

tive systems. Based on the observations, we propose to re-

organize nested page tables to flat tables by exploiting the

unique characteristics of memory management for virtual

machines.

3.1 Memory Overheads of Nested Page
Tables

Current nested page organizations assume that virtual

machines are analogous to processes in native systems.

However, there are several differences between two enti-

ties, which can affect the requirements for nested page ta-

bles significantly. In native systems, there are many pro-

cesses, which may not always be running, but consume the

memory to maintain the state. For example, there are many

daemon processes, which wait for certain events. Many of

such processes use only a tiny amount of the actual system
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Figure 3: Cumulative distributions of memory usage after

booting a Linux system

memory. Figure 3 shows the distribution of memory usage

by processes in a Linux system, after booting the system.

There are 106 processes, and most of the processes use less

than 1MB of memory. Since a page table must be created

for each process even if the process uses a small amount of

memory, the total memory used for all page tables must be

reduced as much as possible.

Furthermore, page tables for processes map the virtual

address space to the physical address space. The virtual ad-

dress space of a process is specified and fixed in the ISA,

and it is much larger than the total system memory. For

example, in the 64-bit x86 architecture, the long mode as-

sumes a 48-bit virtual address space, which can be as large

as 256 TB of memory. Page tables must be able to cover

the entire virtual address space. Due to the aforementioned

requirements for page tables of processes, page tables are

organized into multi-level tables. In the 64-bit x86 architec-

ture, a page table is organized as a four-level table, which

can save the memory for each page table significantly.

However, virtual machines exhibit quite different behav-

iors than processes. Firstly, the number of virtual machines

in a physical system is limited. For VMs running compute-

intensive workloads, the number of virtual CPUs for all

guest VMs often does not exceed the number of physical

cores. Even for I/O intensive servers with relatively low

CPU utilization, the number of VMs in a system is orders

of magnitude smaller than the number of processes in native

systems.

Secondly, nested page tables, which map the guest phys-

ical to system physical memory space, have much smaller

mapping ranges than those of the page tables for processes.

A per-process page table must cover the entire virtual ad-

dress space, but a nested page table needs to cover only

the guest physical memory space. When a VM is created,

the guest physical memory is specified. However, the total

guest physical memory from all VMs often does not exceed

the available system memory. Even if the VM memory is

over-committed, or the total VM memory exceeds the sys-

tem memory, the overcommitment ratio is commonly two
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or three times of the system memory size. Furthermore,

some hypervisor implementations do not even support the

overcommitment of the total VM memory [1].

Thirdly, unlike processes in a native system, most of

which use a tiny fraction of virtual memory space, virtual

machines use much of the guest physical memory. When a

VM is created, an administrator must consider the memory

requirement for the VM, and attempt to assign an appro-

priate memory size. If the majority of the guest physical

memory space is used, multi-leveling the nested page table

for the VM does not reduce the memory overhead for the

nested page table.

Due to the three major differences of virtual machines

from processes, multi-level nested page tables do not have

significant memory savings for virtual machines. The num-

ber of nested page tables is relatively small, as the number

of VMs is limited. Each nested page table needs to cover

a much smaller range of the guest physical address space

than that of the virtual address space. Furthermore, VMs

use much of the guest physical space, and thus require the

nested page table entry anyway for the space. Therefore, for

many of the common use cases of virtual machines, multi-

level nested page tables are not necessary, and they only

increase the number of references unnecessarily in two-

dimensional page walks.

3.2 Flat Nested Page Tables

In this section, exploiting the unique property of VM

memory usage, we propose a technique to reduce the over-

head of nested page table walks. The technique, called

flat nested page table, reduces the number of memory ref-

erences for nested walks by eliminating intermediate page

walks. Figure 4 depicts how the technique simplifies page

walks for virtualized systems.

As discussed in Section 3.1, the benefit of multi-level

page tables is marginal for nested page tables, and thus

the hardware page walker can simply use a flat page table

walk for nested page tables. Flat page table walks are much

simpler than multi-level page table walks, and the support

for them can be added to the current multi-level page table

Process VM(4GB)

# of pages
2
48 / 4KB 4 x 2

30 / 4KB

= 68,719,476,736 = 1,048,576

page table size
# of pages x 8B # of pages x 8B

= 536870912MB = 8MB

Table 1: Memory consumption for a flat page table: process

vs. virtual machine (VM)

walker without any significant increase of complexity. The

nested page table pointer (nCR3) has the starting address of

the flat table. The address of the missed page table entry is

calculated directly by adding the offset to the nCR3 value.

The technique does not necessarily replace the current

multi-level nested page table walkers. Instead, the tech-

nique can co-exist with the current walkers. For certain

virtualized systems, which require multi-level nested page

tables, the conventional walker can be used. If such a fine-

grained memory management is not necessary, the proposed

technique can be used to improve the system performance.

The flat nested page tables can be added on top of the cur-

rently available HW 2D walkers with a negligible increase

of complexity.

Figure 4 depicts page walk procedures with flat nested

page tables. When the level of a guest page table is m, the

number of memory references is reduced to 2m+1 with a

flat nested page table. In the four-level page table walks

in the 64-bit x64 architecture, a TLB miss requires only 9

references with the flat nested page table, reducing 15 refer-

ences from the current 24 references with a four-level nested

page table.

As discussed in Section 3.1, even if a flat nested page

table is used for each VM, it does not increase the memory

overhead for nested page tables significantly. Only a limited

number of VMs run in a system. The flat page table size

for a nested page table for a VM is much less than that for

a guest page table for a process, since a nested page table

needs to cover only the guest physical memory space. For

example, as shown in Table 1, for a VM with a 4GB guest-

physical memory, if 4KB page size is used, the size of a flat

nested page table is 8MB with 8B for each entry. However,



for a process with a 48-bit virtual address space, the flat

page table size is 512GB, and thus supporting such a flat

page table is impossible for processes.

Page Walk Cache (PWC) Policy: Using flat tables

for nested paging can reduce the capacity requirement of

PWC, as nested page table entries do not need to be in the

PWC. Nested page table entries are still cached in NTLB,

but without any intermediate entries with flat tables, the en-

tire capacity of PWC can be used for guest page table walks

(1D PWC).

Supporting Large Pages: Supporting large pages is

also possible with flat page tables. A flat page table has

the same number of entries for the smallest supported page

size, regardless of actual page granularity. For a large page,

all the entries corresponding the large page are marked as

a large page entry. Only the first entry among the multiple

entries for the large page, has an actual physical frame num-

ber. For a TLB miss, the page number at the smallest page

granularity is used to access the flat page table. If the entry

is not the first entry, an additional page table access occurs

to fetch the physical frame number from the first entry of

the large page. Such indirect accesses are necessary, as the

page size is unknown when a TLB miss occurs.

Supporting flat page tables does not require any signif-

icant changes from current multi-level nested page table

walks. Therefore, a system may support flat nested tables

as well as multi-level nested tables, and the hypervisor may

select different page table types for VMs considering their

memory sizes and usage patterns.

4 Speculative Inverted Shadow Paging

Reorganizing nested page tables to flat tables reduces

memory references to the nested page table for each TLB

miss. However, it does not reduce the overhead of multi-

level page walks for guest page tables. An alternative page

table organization is an inverted page table, which can po-

tentially fetch a page table entry by a single memory refer-

ence. In this section, we propose an inverted shadow page

table, which can retrieve a direct mapping from a guest-

virtual page to a system-physical page. However, maintain-

ing direct translations from guest-virtual pages to system-

physical pages has the same overhead of synchronization

with guest page tables as the traditional shadow paging. We

show how speculation can eliminate the hypervisor inter-

ventions for such synchronization.

4.1 Trade-offs of Shadow Paging

Shadow paging provides direct translations from guest

virtual to system physical pages, which can potentially

eliminate walks for nested page tables. However, main-

taining shadow page tables incurs significant performance

and memory overheads, often exceeding its benefits. In
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Figure 5: HW 2D page walk vs. shadow paging: relative

performance with three example applications

this section, we discuss three limitations of shadow paging,

synchronization costs, extra memory overheads, and multi-

level page walks.

The primary performance overhead of shadow paging is

the cost of hypervisor interventions. Exiting from a guest

VM context to the hypervisor context (vm-exit) incurs a sig-

nificant performance overhead in virtualized systems. To

maintain consistent shadow pages, there have been two

types of mechanisms to detect guest page table changes.

Firstly, the hypervisor restricts the memory area of guest

page tables to be read-only. Any attempt by a guest OS to

update guest page tables will be caught by the hypervisor.

An alternative way, called virtual TLB, is to let a guest OS

to modify a guest page table, and detect the change later if

the corresponding shadow page table entry does not exist

during an actual memory access to the page. In the mech-

anism, TLB invalidation instructions also invoke the hyper-

visor, as the guest OS executes them for TLB consistency,

when it removes page table entries from guest page tables.

If a page fault occurs, the hypervisor must intervene and

may have to traverse both the guest and shadow page tables,

since it does not know whether the page fault must be han-

dled by the guest OS or hypervisor. Furthermore during a

process context switch within a guest VM, the hypervisor

should replace the guest page table pointer with the cor-

responding shadow page table pointer, so that the HW page

table walker uses the shadow page table, instead of the guest

page table.

To compare the performance behaviors of shadow pag-

ing and hardware-based 2D page walk techniques, we ex-

amined three selected workloads on the Xen hypervisor

running on an Intel Xeon E5530 system. The processor

is equipped with EPT (Extend Page Table), which sup-

ports hardware-based 2D page walks. Two workloads,

kernel-compile and fork-wait, represent a case

when vm-exit operations occur frequently with shadow pag-

ing for synchronization. Fork-wait is a simple micro-

benchmark which repeats process creation and destruction

operations aggressively. Figure 5 shows the performance

comparison of shadow paging with HW-based 2D page

walks. The two benchmarks exhibit much worse perfor-

mance with shadow paging than with HW-based 2D page



walks due to the excessive hypervisor interventions. In

the figure, mcf represents a case which exhibits high TLB

misses with low shadow page synchronization overheads.

Since shadow paging can potentially reduce the memory

references for retrieving a translation for each TLB miss,

the performance of mcf is 17% better with shadow paging

than with HW-based 2D page walks. Prior studies reported

similar performance trade-offs between shadow paging and

HW-based 2D page walks [20, 21, 22].

Another cost of shadow paging is the extra memory for

shadow page tables for guest processes. To reduce such a

memory overhead, some hypervisors use in-memory caches

for shadow page tables, not to keep shadow page tables in

memory for all processes in guest VMs. However, if a miss

occurs for the in-memory shadow page cache, the missed

shadow page table must be reconstructed with the guest

page table and nested page table of the VM. Xen statically

allocates the memory reserved for shadow page tables for

each guest virtual machine. The amount of reserved mem-

ory for shadow pages increases, as the number of virtual

CPUs and the configured memory for a guest VM increase.

For example, a VM, configured with 1 vCPU and 4GB, con-

sumes 33MB memory to maintain the shadow page tables

on the Xen hypervisor.

The last limitation of traditional shadow paging is that

it uses the same multi-level page walks as guest page ta-

bles. Shadow paging had been invented to support 2-level

address translation with a legacy 1D HW page walker, and

thus it assumes the same multi-level page table organiza-

tion as traditional guest page tables. In this paper, we pro-

pose a new page table organization, which has the benefit

of shadow paging providing direct translations from guest-

virtual to system-physical pages, while reducing memory

references to walk multi-level page tables.

4.2 Hashed Inverted Shadow Page Tables

One of the traditional alternatives to multi-level page ta-

bles is a hashed inverted page table [6, 15]. A hashed in-

verted page table organizes a page table as a hash table, and

searches a page table entry by a hash of the virtual page

number and process identifier. One inverted page table is

necessary for the entire system, and its size is often propor-

tional to the system memory size. PA-RISC supports such

a hashed inverted page table [14]. With the hashed table,

the best case requires only one or two memory references if

there is no hash collision. However, a collision case may re-

quire to search the inverted page table with a chain of many

references.

A slightly different approach from the inverted page ta-

ble is to use a directly accessible in-memory cache of the

complete page table. Translation Storage Buffers (TSB)

used by the SPARC architecture is an in-memory direct-

mapped cache of the complete address translation [2]. The
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Figure 6: Page table walks with a hashed inverted shadow

page table

main difference of TSB from the inverted page table is that

TSB does not require a chain of references to the inverted

table. If the missed translation entry is not found in the cor-

responding TSB entry, the operating system will search the

complete translation table. TSB lookups can be done either

by a software fault handler or by a hardware TSB walker.

A similar directly indexed translation caching can be

used for virtualization. Traditional shadow paging uses a

duplicate shadow page table for each guest process. In-

stead of such a per-process shadow page table, we propose

a system-wide hashed inverted shadow page, indexed by a

hash of the VM identifier, process ID, and guest virtual page

number as shown Figure 6. If the corresponding hashed

shadow page entry contains the mapping, a TLB miss can

be handled by a single memory reference. If the entry does

not contain the requested mapping, a page walk for the com-

plete guest and nested page tables is initiated. As the hashed

shadow page is a translation cache for nested translation, it

does not replace nested page tables, which are necessary

to keep a complete memory mapping for each virtual ma-

chine. Note that unlike traditional inverted page tables, the

proposed inverted shadow page table does not include a tag

in each entry to verify VM identifier, process identifier, and

virtual page number. It can eliminate the tag information,

since the translations in the inverted page table will be used

only speculatively, as discussed in the next section.

The inverted shadow page table does not require the

modification of the current page table organization speci-

fied in the ISA. However, the hardware page walker must

be modified to additionally support a lookup mechanism for

the inverted shadow page table. Since the inverted shadow

page table is an in-memory cache of the complete trans-

lation, the hardware page walker must update the inverted

page table if the translation is not in the inverted page table

for a TLB miss. The hypervisor only needs to reserve the

system memory for the inverted shadow page table. As a

system-wide cache of translation, the inverted shadow page

may reduce the memory overhead for duplicating all guest

page tables in the traditional shadow paging. Even if the

number of VMs or vCPUs increases, the size of the system-

wide inverted shadow page table does not need to increase.

With such a hardware-based management of the inverted
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shadow paging, it requires only one memory reference to

fetch a direction translation from a guest virtual page to a

system physical page, if the request hits on the inverted ta-

ble.

However, such an inverted shadow page table has the

same critical problem as the traditional shadow page table.

If a guest OS modifies a guest page table, the hypervisor

must intervene to update or invalidate the cached entry in

the inverted shadow page table. In this paper, we propose

a speculative mechanism to eliminate such synchronization

by the hypervisor completely.

4.3 Speculatively Handling TLB misses

Using speculation to reduce the cost of TLB misses is not

new. SpecTLB first proposed to use speculation to predict

address translation [7]. For a TLB miss, the processor con-

tinues to execute with a predicted translation, while a tradi-

tional page walk will verify the prediction. The speculative

mechanism uses the same recovery mechanism commonly

found in the current processors supporting speculative exe-

cutions with re-order buffers or checkpointing [13].

In this paper, we use speculation to eliminate the syn-

chronization between guest page tables and the inverted

shadow page table. Speculative Inverted Shadow Paging

(SpecISP) eliminates the needs for hypervisor interventions,

even if a guest page changes. Instead, the inverted shadow

page table is allowed to have the obsolete mapping infor-

mation. For a TLB miss, the processor can speculatively

execute with a mapping found in the inverted shadow page

table. Simultaneously, the nested page walks will fetch the

correct translation to verify whether the speculation is cor-

rect.

Figure 7 depicts the simultaneous walks for the spec-

ulative inverted shadow page table (1), and for the non-

speculative flat nested page table (2). The speculative walk

will finish much earlier than the non-speculative walk for

the majority of TLB misses, as it requires only a single

memory reference. However, it is also possible that the

inverted shadow page table lookup may take longer than

the non-speculative flat table lookup. If the lookup of

the inverted shadow page table is a cache miss, and all

the memory references for the guest and nested page ta-

ble lookups are cache hits, the speculative lookup may take

longer than the non-speculative lookup. In Section 5.3, we

will show differences in latencies between speculative and

non-speculative page walks with our simulated system.

If a speculative execution is correct, the inverted table

organization allows SpecISP to retrieve a translation en-

try with a single memory reference, in contrast to multi-

ple memory references in 2D page table walks with HW-

based nested paging, or 1D page walks with shadow paging.

As misspeculation rates are relatively low for many appli-

cations, SpecISP excels both HW 2D walking and shadow

paging for common cases.

Even if a misspeculation occurs, the latency for a TLB

miss is bounded by the latency of the correct nested

page walk and the recovery cost for speculative execu-

tion. SpecISP excels shadow paging when changes in guest

page mappings occur frequently. Misspeculation costs with

SpecISP are much smaller than those of hypervisor inter-

ventions in shadow paging. A page mapping change will

cause SpecISP to misspeculate due to the obsolete informa-

tion in the inverted table. However, unlike shadow paging

which requires hypervisor interventions with long latencies,

such a misspeculation can be resolved quickly in SpecISP,

since a simultaneous correct nested page walk will finish

quickly with the HW-based nested page walker.

SpecISP does not require significant extra supports from

conventional speculative execution cores. The conven-

tional speculative execution capability of out-of-order cores

for branch and memory speculation is enough to support

SpecISP. The added logic is to compare the speculative sys-

tem physical address and permission bits with the correct

translation when the non-speculative nested page table walk

completes for a TLB miss. For a simple in-order processor,

it is necessary to add a register checkpointing mechanism

and a store queue to support speculation.

5 Evaluation

5.1 Methodology

To evaluate the proposed schemes, we use the Sim-

ics full-system simulator [16], running the Xen hypervisor

(version 4.0.1) [5] on the simulator. Using the real hyper-

visor improves the accuracy of the evaluation, as it includes



Parameter Value

Processors In-order x86 processor

L1 I/D Cache 1-cycle, 32KB, 4-way, 64B block

L2 Cache 12-cycle, 512KB, 8-way, 64B block

Average L2 miss latency: 100 cycles

Instruction TLB
1-cycle, 32-entry, fully assoc. L1

2-cycle, 512-entry, 4-way, L2

Data TLB
1-cycle, 64-entry, fully assoc. L1

2-cycle, 512-entry, 4-way, L2

Page Walk Cache

24-entry, fully assoc.

2-cycle PWC access

Flushed on each TLB flush

Nested TLB

16-entry, fully assoc.

2-cycle NTLB access

Never flushed during guest execution

Table 2: Simulated system configurations

SPECint Applications

Application
gcc, mcf, sjeng, libquantum

omnetpp, astar, xalancbmk

Dataset Reference input

Commercial Applications

SPECjbb 2005 4 warehouses

SPECweb 2005 100 simultaneous sessions

RUBiS Default bidding workload

(like ebay) Apache, PHP, MySQL

OLTP MySQL

OrderEntry Swingbench (Oracle)

StressTest Swingbench (Oracle)

KernelCompile linux kernel 2.6.38

Volano 50 rooms, 1000 connections

(chatting server) Apache, Sun-JVM

Table 3: Application input data and parameters

the effect of hypervisors on TLB and cache behaviors. A

custom memory hierarchy model has been augmented to

the Simics simulator to model multi-level caches and TLBs.

The simulated system has a single core to reduce simula-

tion times, and the core has 32KB L1 instruction and data

caches, and a 512KB L2 cache. The system uses sepa-

rate two-level TLBs for instruction and data. The separate

L2 TLB for each instruction and data has 512 entries. All

page table entries, including intermediate translations, can

be cached in the L2 cache.

We use a simple in-order processor model for the x86

ISA, due to the limitation of our simulation infrastructure.

To the in-order model, we have added a checkpointing

mechanism for speculative execution. However, if out-of-

order execution cores supporting speculative execution, are

available, it is not necessary to add such an extra check-

pointing mechanism. For a TLB miss, a register check-

point is created, and during a speculative execution period,

up-to 24 stores can be buffered in the store buffer. If no

more stores can be buffered in the store buffer, the core is

stalled. The speculative execution capability limited by the

store buffer size, is similar to the latest out-of-order execu-

tion cores with more than 100 outstanding instructions and

24 stores [12].

The baseline system uses four-level two-dimensional

page walks for both guest and nested page tables as shown

in Figure 2. To compare the proposed schemes to the latest

advancements for reducing TLB miss latencies, the baseline

system has a page walk cache (PWC), which can cache 2D

intermediate page table entries, and a nested TLB (NTLB).

We use the same PWC and NTLB management policies as

discussed in Bhargava et al [8]. The details of system con-

figurations are shown in Table 2.

On top of the Xen hypervisor, a guest virtual machine,

which uses a Ubuntu distribution based on Linux kernel

2.6.18, and the domain 0 virtual machine are running. The

domain0 virtual machine is a special virtual machine, which

handles I/O devices. On the guest VM, we run our bench-

mark, seven applications selected from the SPECint 2006

benchmark (SPECint), and seven commercial applica-

tions (commercial). Table 3 describes the details of

benchmark applications.

The execution times shown in the section are all normal-

ized to the execution time with a state-of-the-art hardware

2D page walker with both PWC and NTLB (baseline).

The flat nested walker (flat) uses 1D PWC and NTLB.

We also show an ideal configuration with the perfect TLBs

(perfect-TLB), which does not have any TLB misses.

Speculative inverted shadow paging can use either flat page

tables (SpecISP w/ flat) or 4-level nested page ta-

bles (SpecISP w/4-level), as non-speculative back-

ing page tables.

5.2 Flat Nested Page Tables

In this section, we first evaluate how much performance

improvement a flat nested page table can achieve, compared

to the baseline state-of-the-art 2D page walker. Figure 8

shows the normalized execution times with a flat page table.

The flat nested page table, requiring a very minor addition

to the current page walker logic, improves the performance

for all the applications from the baseline. On average,

the flat nested page table reduces the execution times by

5% (SPECint) and 8% (commercial) from 4-level

2D PWC+NTLB. The improvements are high in RUBiS and

Volano, by 10% and 12% respectively. The performance

improvements by the flat page table may be relatively mod-

est for SPECint, but the improvements are significant for

the commercial workloads. The ideal perfect-TLB

has further potential performance improvements of 11% for

SPECint, and 16% for commercial from the flat nested

page table.

Table 4 presents the rates of TLB misses, and the number

of L2 cache accesses and hit rates to handle TLB misses,

comparing 4-level and flat nested page walks. For a TLB

miss, if a nested page walk can be served by PWC or NTLB,

the page walk does not need to access the L2 cache. How-

ever, if the corresponding entry is found neither in the PWC
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Figure 8: Execution times of flat vs. 4-level nested page table (normalized to the baseline)
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Figure 9: Execution times of SpecISP vs. flat nested paging (normalized to the baseline)

L2 accesses for page walks

TLB
4-level flat

(2D PWC + NTLB) (1D PWC + NTLB)

Workloads Misses Accesses Hit rate Accesses Hit rate

gcc 11,454 44,364 99.4% 31,625 99.5%

mcf 36,461 86,193 98.3% 73,583 99.1%

sjeng 9,803 38,921 99.0% 28,114 99.1%

libquantum 6,949 26,800 99.3% 19,070 99.4%

omnetpp 5,489 20,216 82.3% 13,478 85.2%

astar 22,788 58,999 88.3% 50,738 92.1%

xalancbmk 6,212 21,233 98.1% 15,753 98.4%

SPECjbb 6,518 25,486 91.7% 18,220 93.2%

RUBiS 16,703 67,823 98.6% 47,539 98.7%

OLTP 14,176 56,661 97.4% 39,738 97.9%

OrderEntry 16,771 71,580 95.1% 50,425 95.1%

StressTest 26,952 110,326 96.4% 79,484 96.3%

KernelCom. 5,902 22,077 98.6% 14,893 98.6%

Volano 31,404 129,978 97.9% 88,316 97.9%

Table 4: TLB misses and L2 cache accesses for page table

entry references (per 1M instructions)

nor NTLB, the walker accesses the L2 cache.

Using a flat nested page table reduces L2 accesses to

serve TLB misses significantly. On average, the L2 accesses

are reduced by 28% with the flat nested page table, as the

flat table requires fewer memory references than the multi-

level page walk in the baseline. However, the L2 cache hit

rates for both of the four-level and flat nested page tables

are very high for most of applications. Due to such high L2

hit rates for page table walks and relatively low TLB miss

rates for some applications, the performance benefit of re-

ducing page walk references with the flat nested page table

is modest for them as shown in Figure 8.

5.3 Speculative Inverted Shadow Paging

In this section, we evaluate the performance benefit of

speculative inverted shadow page tables (SpecISP). The in-

verted shadow page table reduces the number of references

for guest page table lookups as well as nested page table

lookups. Figure 9 presents the normalized execution times

with SpecISP. The inverted shadow paging with flat nested

paging reduces the average execution times by 6% and 8%

from flat, for SPECint and commercial respectively.

Compared to baseline, it reduces the execution times by

12% and 17%. Also, the execution times with SpecISP be-

come close to those with the perfect TLBs, with 4% and 7%

performance differences for SPECint and commercial,

from the ideal configuration.

Using traditional 4-level nested page tables as the

backing page tables for SpecISP reduces its effectiveness

slightly. However, we expect that by increasing the depth

of speculative execution, SpecISP can potentially use either

flat page tables or 4-level page tables, achieving similar per-

formance improvements.

Figure 11 shows the cumulative distributions of laten-

cies serving a TLB miss. Depending on whether references

hit on the PWC or L2 cache, the TLB miss latencies vary.

The figure shows two curves. The dotted line is the distribu-

tion of latencies for walking through the speculative shadow

page table, and the solid line is for the non-speculative

flat page table walk. The latencies through the inverted

shadow paging are less than 12 cycles for more than 95%

of TLB misses, as it requires a single lookup of the inverted

shadow page table entry. The lookups commonly hit on the
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Figure 10: Sensitivity to PWC and NTLB with SpecISP (normalized to the baseline)
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Figure 11: Cumulative distributions of TLB miss latencies

for the Volano benchmark

Workloads Mis-spec. rate Workloads Mis-spec. rate

gcc 2.072% SPECjbb 0.057%

mcf 0.008% RUBiS 0.051%

sjeng 0.150% OLTP 0.000%

libquantum 2.400% OrderEntry 0.008%

omnetpp 0.000% StressTest 0.005%

astar 0.000% KernelCompile 5.312%

xalancbmk 0.672% Volano 0.000%

Table 5: Misspeculation rates with SpecISP

L2 cache. However, the latencies of non-speculative flat

page table walks are within 60 cycles for 70% and 92 cy-

cles for 90% of TLB misses. The latency differences are

significant enough to justify accessing the inverted shadow

paging speculatively, as speculative accesses return transla-

tions much faster than non-speculative accesses. Further-

more, the differences between two accesses are within 90

cycles for the majority of TLB misses. The differences are

reasonably small enough to wait the verification by non-

speculative accesses with the out-of-order execution capa-

bility in the current microprocessors.

Table 5 presents how often misspeculation occurs with

the inverted shadow paging. For gcc, libquantum, and

kernelCompile, there are relatively frequent changes of

guest page tables, and thus misspeculation rates are high

(2.1-5.3%). However, the rest of applications show very

low rates of misspeculation. These low misspeculation rates

indicate that the proposed speculative mechanism does not

have significant overheads for pipeline flushes due to mis-

speculation. However, even if a misspeculation occurs, the

cost of handling the misspeculation is much lower than the

cost of hypervisor interventions in shadow paging.

5.4 Sensitivity Studies

Removing NTLB and PWC: Page Walk Cache (PWC)

and Nested TLB (NTLB) reduce memory references to

fetch translations for guest page tables and nested page ta-

bles in 2D nested page walks. With the proposed SpecISP,

their benefits will decrease, as speculative execution can

hide long latencies of accessing the correct mapping. If the

performance gain with PWC and NTLB is low, the struc-

tures can be removed to reduce the area and power costs. In

this section, we evaluate the impact of removing PWC and

NTLB from SpecISP.

Figure 10 presents two additional design configurations

with SpecISP. The first bar represents a SpecISP configura-

tion with neither PWC nor NTLB for the non-specultive 2D

walk, and the second bar represents a configuration with

only PWC. The last bar includes both of them. The re-

sults indicate that there are no significant performance dif-

ferences among the configurations. Since the accuracy of

speculative execution is high, and the speculative execution

hides extra latencies increased due to the lack of PWC or

NTLB, the increased latencies for getting the correct map-

ping do not influence the overall performance significantly.

Sensitivity to Speculation Depth: In this section, we

discuss how sensitive the overall performance is to specu-

lative execution capability. In our checkpoint-based sim-

ulation, reducing the store buffer size limits the capability

of speculative execution. To evaluate the effect of reduced

speculation depth, we run experiments with a 12-entry store

buffer, comparing them to the results with a 24-entry store

buffer. Even with the store buffer size decreased by half,

there is no noticeable effect on the performance of SpecISP

(0.3% decrease on average). Even if we assume an infi-

nite store buffer, the execution times do not improve signif-

icantly with only 1% improvement on average. The main

reason for the insensitivity to speculation depth is that stalls

due to the limited speculation depth occur rarely. The time

period of speculative execution is short, with less than 92

cycles for more than 90% of all the speculation cases.



6 Conclusions

This paper explored how the nested address transla-

tion mechanism for virtualization may evolve, if the dis-

tinct characteristics of memory management for virtual ma-

chines are considered for the architectural supports. We

proposed and evaluated two schemes to reduce the over-

heads of nested address translation in virtualized systems.

Firstly, flat nested page tables reduce memory references re-

quired for 2D page walks. Supporting flat nested page tables

in current nested page table walkers should require a minor

change with little extra hardware. Secondly, speculative in-

verted shadow paging can reduce the cost of a nested page

walk to a single memory reference in common cases, with-

out hypervisor interventions for guest page table changes.

With minor changes from the current HW 2D walkers, flat

nested page tables can reduce the average execution time

by 7% over a state-of-the-art 2D page walker with the PWC

and NTLB. With more extensive changes than flat nested

paging, SpecISP improves the overall performance by 14%

from the state-of-the-art 2D page walker.
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