
Appears in the ACM 26
th Symposium on Applied Computing (SAC’11)

Sector Log: Fine-Grained Storage Management
for Solid State Drives ∗

Seongwook Jin,Jaehong Kim,Jaegeuk Kim,Jaehyuk Huh, and Seungryoul Maeng
Computer Science Division

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon 305701, Korea

{swjin, jaehong, jgkim}@calab.kaist.ac.kr, {jhuh, maeng}@cs.kaist.ac.kr

ABSTRACT
Although NAND flash-based solid-state drives (SSDs) excel
magnetic disks in several aspects, the costs of write opera-
tions have been limiting their performance. The overheads
of write operations are exacerbated by the fixed write unit
(page) of flash memory, which is much larger than the sec-
tor size in magnetic disks. A write request from a file sys-
tem, with a data size smaller than a page, becomes a full
page write in SSDs. With the page size hidden internally in
SSDs, file systems and applications may not be optimized to
a fixed page size. Furthermore, to increase the density and
bandwidth of flash memory, page sizes in SSDs have been
increasing.

In this paper, we propose a sector-level data management
mechanism for SSDs, called sector log. Sector log manages
a small part of NAND flash memory in SSDs with sector-
level mapping, and stores sub-page writes more efficiently
than conventional SSDs. While current small DRAM buffers
cannot absorb the working set of sub-page writes for certain
applications, sector log uses ample persistent storage in flash
memory. With the sector mapping mechanism, sector log
provides a sector-accessible block device abstraction upon
page-managed flash memory.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Mass storage; D.4.2 [Storage

Management]: Storage hierarchies

General Terms
Design, Performance, Measurement

Keywords
Flash Memory, Storage System, Solid State Drive

∗This work was supported by the IT R&D Program of
MKE/KEIT. [2010-KI002090, Development of Technology
Base for Trustworthy Computing]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1. INTRODUCTION
Solid-state drives (SSDs) using NAND flash memory have

been replacing traditional magnetic disks in various seg-
ments of storage markets. However, flash memory imposes
several critical restrictions on SSD designs, one of which is
that it requires an erase operation before re-writing a lo-
cation. Since erase operations take much longer latencies
than write operations, updated data are commonly written
to a new location pre-erased by garbage collection. As each
update changes the physical location of a logical address, a
mapping mechanism called Flash Translation Layer (FTL)
supports dynamic logical-to-physical re-mapping.

The smallest mapping granularity in SSD is a page, and
the page size is much larger than the write unit of hard disks
(sector). The page size may vary by the internal organiza-
tions of flash chips and SSDs. As current file systems and
applications are designed for magnetic disks, they frequently
issue writes with a smaller data size than the page size of
SSDs. Furthermore, such sub-page writes will occur more
frequently as the page size of SSDs increases with shrink-
ing flash cell sizes by technology advancement, and with
super-paging to improve SSD bandwidth. Sub-page writes
can cause significant performance degradation on SSDs since
each sub-page write becomes a full-page write in flash mem-
ory. To reduce writes to flash memory, such sub-page writes
should be merged to full-page writes as much as possible
before they are issued to the page-managed flash memory.
DRAM buffers in SSDs can reduce sub-page writes for cer-
tain applications, but their capacity is too small to accom-
modate the working set of general workloads. Furthermore,
the volatility of DRAM may limit such buffering, to avoid
the risk of losing data on power failures.

This paper proposes a new fine-grained mapping mecha-
nism, called sector log, which reduces the costs of sub-page
writes in SSDs. Sector log manages a small part of NAND
flash area with a sector-level mapping, which supports 512B
granularity. Sector log resides on top of a conventional FTL,
and the FTL manages the rest of the flash area at page gran-
ularity. Sub-page writes are written to the sector log region,
while full page writes are directly transferred to the FTL.
By storing sectors in flash memory, sector log can absorb
sub-page writes from applications with a large working set,
which cannot fit in small DRAM buffers. Furthermore, as
the sub-page write data are written to flash memory quickly,
they can persist during power failures unlike volatile DRAM
buffers. The available DRAM buffer size is limited, with
the DRAM size an order of magnitude smaller than that of
sector log in flash memory. As sector log provides efficient

sector-level data management in flash memory, file systems
and applications do not need to be modified to a specific
write unit of flash memory, which may vary by SSD designs.
To the best of our knowledge, this is the first study in SSDs
to manage some part of flash memory at sector granularity.

Using a trace-driven simulator, we evaluated the proposed
sector log architecture with two on-line transaction process-
ing traces (TPC-C and Financial) and a desktop trace. Sec-
tor log reduces 42% of the total writes in the TPC-C trace
and 13% of the total writes in the Financial trace with 8KB
page size. The decrease in write traffic to flash memory im-
proves the overall SSD throughput by 126% for TPC-C and
53% for Financial with 8KB page size. By absorbing sub-
page writes in a sector-mapped storage, sector log improves
the performance and endurance of NAND flash based SSDs.

2. BACKGROUND

2.1 SSDs with NAND Flash Memory
NAND flash is a non-volatile semiconductor memory de-

vice, with several unique characteristics compared to DRAM
and magnetic disks. A flash chip consists of multiple blocks.
Each block is divided into pages, typically containing 64 or
128 pages. The size of a page is typically 2KB or 4KB for
single-level cell (SLC) flash. The unit of reads and writes is
a page. Before overwriting a page, the page must be erased
at a block granularity.

Using flash memory chips, solid-state drives (SSDs) pro-
vide a block device abstraction to the host system. A typical
SSD consists of a host interface logic, NAND flash pack-
ages, DRAM and an SSD controller. The SSD controller
runs a software layer called flash translation layer (FTL).
The FTL translates read/write requests from the host into
NAND flash operations (read, write and erase). Using a dy-
namic logical-to-physical address mapping, the FTL hides
the erase-before-write characteristic of flash memory. The
SSD controller maintains the mapping information in the
DRAM. Also a DRAM buffer can temporarily store read/write
pages to allow fast accesses to recently accessed data.

Type Read Write Erase
DRAM 20ns 20ns
NAND flash 165.6us 905.8us 1.5ms

Table 1: NAND Flash latency

Among the unique characteristics of NAND flash memory,
two factors make write operations costly. Firstly, as shown
in Table 1, the write latencies to flash memory are 6-7 times
longer than the read latencies and the unit of a write is fixed
to a page. Secondly, due to the erase-before-write charac-
teristic and limited write endurance of flash memory, each
update is written to a new location, requiring a dynamic
logical-to-physical mapping by FTLs. To always have some
free space for new writes, FTLs execute costly garbage col-
lection processes to erase obsolete blocks. Since the unit of
erase operations is a block, the garbage collection process
consumes a significant write bandwidth to copy valid pages
in victim blocks.

To increase the bandwidth of read/write in SSDs, many
SSD manufacturers use interleaving techniques to maximize
the parallelism of flash accesses. SSDs can use multiple flash
packages with separate channels to access the chips simulta-

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Page Writes in FlshWrites from the host

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Write Buffer Page Writes in FlshWrites from the host

�
�
�
�

�
�
�
�

a sector from page 1 a sector from page 2 a sector from page 3

(a) Processing sub−page writes without buffering: 8 full−page writes to flash memory

(b) Processing sub−page writes with buffering: 3 full−page writes to flash memory

Figure 1: Merging sub-page writes with buffering

neously. Instead of reading or writing a page, multiple pages
can be accessed in parallel to reduce the latencies of access-
ing a large chunk of data. The technique called super-paging

combines several NAND flash physical pages, and the SSD
accesses the flash memory by the super-page unit for each
read and write operation [3, 6, 12].

2.2 The Costs of Sub-page Writes
NAND flash memory allows write operations only at page

granularity. A sub-page write occurs when the host sends
a write request smaller than the SSD write unit (page or
super-page). In SSDs, sub-page writes consume extra read
bandwidth, due to out-of-place updates. Writing a part of
a page requires reading the current unmodified page, merg-
ing the sub-page write portion with the unmodified part,
and writing the merged page to a new free page. After the
update, the logical page address must point to the newly
written page.

The most important cost of sub-page writes is that they
increase page writes to flash memory unnecessarily. If multi-
ple separate requests update parts of the same page, each up-
date requires writing the entire page, increasing total writes
to flash memory. Increasing writes to flash memory not only
consumes the expensive write bandwidth of SSDs, but also
increases the occurrences of garbage collection processes to
clean blocks to make free pages. It has been shown that
the garbage collection processes can significantly degrade
the performance of SSDs [13, 10, 8]. Furthermore, increas-
ing writes to flash memory adversely affects the endurance of
SSDs too. As pages are updated more frequently, consuming
more limited erase cycles, the longevity of SSDs decreases.

Buffering incoming sub-page writes can reduce page writes,
as shown in Figure 1. A small box represents a sub-page
write, which updates only a quarter of a page. Without
buffering, 8 writes from the host are turned into 8 full-page
writes to flash memory. With some buffering, 8 writes are
merged into 3 full-page writes, reducing the total writes to
flash memory. If a SSD uses a DRAM buffer, it can reduce
writes by merging sub-page writes.

3. MOTIVATION
DRAM buffers can improve SSD performance by tem-

porarily storing all recent read and write data. They can
potentially reduce sub-page writes by merging them into
full-page writes. In this section, we present the ratio of
sub-page writes with varying amounts of DRAM buffers, to
investigate the working set of write data for our benchmark
applications which are described in Section 5.1.

Figure 2 presents the ratio of sub-page writes to the total
writes with varying DRAM buffer sizes from 0 (no buffering)

 0

 20

 40

 60

 80

 100

0 8 16 32 64 128 256 512 1024

S
u
b
-
p
a
g
e

W
r
i
t
e

R
a
t
i
o

The size of DRAM (Mbytes)

4KB
8KB

16KB
32KB

(a) General

 0

 20

 40

 60

 80

 100

0 8 16 32 64 128 256 512 1024

S
u
b
-
p
a
g
e

W
r
i
t
e

R
a
t
i
o

The size of DRAM (Mbytes)

4KB
8KB

16KB
32KB

(b) Financial

 0

 20

 40

 60

 80

 100

0 8 16 32 64 128 256 512 1024

S
u
b
-
p
a
g
e

W
r
i
t
e

R
a
t
i
o

The size of DRAM (Mbytes)

4KB
8KB

16KB
32KB

(c) TPC-C

Figure 2: The sub-page write ratio with varying page size

to 1GB. However, current SSDs use only a small amount of
DRAM buffer in a range of 8KB-64MB[12], due to the high
cost of DRAM. In the figure, for each trace, we show four
different page sizes (4, 8, 16, and 32KB page sizes). The
DRAM buffers store recently written data, including both
full-page and sub-page writes at page granularity, and evict
the least recently used page when the capacity becomes full.

3.1 Sub-page Writes from the Host
Some applications frequently generate small-sized writes

without much locality in the DRAM buffer. Due to the
lack of locality, such small writes with random patterns,
are difficult to be merged to full-page requests in the kernel
or DRAM buffer. In online transaction processing (OLTP)
workloads, small read/write requests dominate the total re-
quests, as the applications process many small transactions. [14,
20]. Furthermore, most of the file systems and applications
are unaware of the internal organization of SSDs, which are
hidden inside the SSDs and vary by SSD designs[12]. Due to
the hidden page size, the host frequently sends writes smaller
than the page size without merging in the file systems.

In Figure 2, for 4KB page size, the General and Financial
traces show a significant reduction of sub-page writes even
with modest 8-64MB DRAM buffers. With a 64MB DRAM
buffer, The Financial trace can reduce the sub-page writes
to 11% from 53% before merging. The Financial trace shows
a high temporal and spatial locality of writes in the 64MB
DRAM buffer (70% write hit ratio in the DRAM buffer).

However, TPC-C shows that 98% of writes from the host
are sub-page writes, but the DRAM buffers are too small
to hold the sub-page writes of the TPC-C workload. A
64MB DRAM buffer can only reduce the sub-page writes
by 1%, and 97% of total writes to NAND flash is still sub-
page writes. Even with a 1GB DRAM buffer, sub-page write
ratios do not decrease significantly. Since full-page writes
without locality evict sub-page writes from the DRAM buffer,
even a large 1GB buffer cannot reduce sub-page writes ef-
fectively.

3.2 Increasing Page Sizes in SSDs
The page size of flash memory has been increasing to lower

the production cost by decreasing flash cell sizes or to im-
prove the bandwidth of SSDs with super-paging.

Advanced lithography: As NAND flash memory tech-
nology advances, the density of NAND flash memory in-
creases and each bit cell becomes smaller. However, wires
for interconnection do not scale as well as the cell size. Since
the area for wires is significant in flash memory, NAND flash
manufacturers increase the page size to improve the density

with less wiring overheads [5]. The latest 25nm NAND flash
memory has 8KB page size which is larger than 4KB page
size in the previous generation of technology [18].

Super-paging: As mentioned Section 2.1, super-paging
can reduce the latencies of accessing a large contiguous chunk
of data. However, not all applications can benefit from the
latency reduction by super-paging, if applications access the
storage in smaller units than the super-page size. With
super-paging, the write granularity of SSDs becomes larger,
increasing the sub-page writes.

Figure 2 shows the effect of increasing page sizes with
varying DRAM buffer sizes. TPC-C shows high ratios (more
than 95%) of sub-page writes for all page sizes. The Finan-
cial and General traces show a significant increase of sub-
page write ratios from 4KB to 32KB page size. Although
modest DRAM buffers (8-64MB) can reduce the sub-page
write ratio effectively for 4KB page, the ratios increase sig-
nificantly with larger page sizes, more than tripling the ratio
from 4KB to 32KB.

Advanced lithography may cut production cost, and super-
paging can improve the access latencies for a large chunk of
data. However, they can potentially increase sub-page write
ratios, losing the opportunity to improve the performance
further. Sector log mitigates the negative impact of the in-
crease of page sizes.

4. SECTOR LOG ARCHITECTURE

4.1 Overall Architecture
In the context of this paper, a sector is 512B unit, which

is the smallest storage unit in the proposed sector architec-
ture. Sector Log is a log-based buffer which efficiently stores
non-contiguous sectors in flash memory at sector granular-
ity. Sector log stores sub-pages writes in a small part of the
flash memory. Logically non-contiguous sectors can be com-
bined and stored in a flash page, since the write unit of flash
is still a page. Sector log requires a fine-grained mapping
mechanism to map sectors from different logical pages to a
physical flash page.

Figure 3 shows the overview of sector log. Sector log is
located between the DRAM buffer and FTL, and receives
victim data evicted from the DRAM buffer. Sector log
has three components, Page Buffer, Sector Map, and Sec-

tor Data. The page buffer and sector map reside in DRAM,
and share the DRAM capacity with the DRAM buffer. The
sector data uses a part of flash memory in SSDs, keeping the
data in the persistent storage.

Page buffer can hold one page of data, and the sub-page

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

Sector Data (sector−mapped)

Page−mapped Flash Area

NAND flash memory

Logical address

Sector
Map

Page
Map

FTL

Sector
Log

Sectors
Non−contiguous

Sectors
ContiguousPage Buffer

(DRAM)

Figure 3: The architecture of sector log

0

n

2

1

3

Phys. Addr

Phys. Addr

Phys. Addr

Phys. Addr

Sector MapLogical Sector Number

hash

Page number

Sector Map Entry

Page Addr NextPtr

Sector 0

Sector m

Sector 1

Sector 2

Page

m sectors in a page

Figure 4: Sector map organization

writes from the DRAM buffer are accumulated in the page
buffer. All incoming sub-page writes in multiples of sector
unit are accumulated to the page buffer until the page buffer
is full. The sectors stored in the page buffer can belong to
different logical pages. As soon as one page is full with a set
of sub-page writes, the content of the page buffer is stored
in the sector data region. If the evicted data size from the
DRAM buffer is a multiple of page size, it is transferred
directly to the flash memory region managed by the FTL.
Sector map records the physical locations of logical sectors.
Section 4.2 describes the details of sector map organization.

The actual data of sector log is stored in the sector data
consisting of blocks of flash memory. A physical page of the
sector data can contain sectors from different logical pages.
The sector data region is organized as a circular log, so new
data from the page buffer are written to a free page at the
head of the log. If the sector data region becomes full, a
victim block must be evicted from the sector data region
to the FTL. For victim selection, sector log picks the least
recently written physical block of the sector data, i.e. the
tail block. A victim page from the evicted block may contain
sectors from multiple logical pages. For each sector in the
victim page, sector log searches the sector map to find other
sectors belonging to the same logical page. If other sectors
in the same logical page exist in sector log, the sectors of
the same page are merged and sent to the FTL together.

4.2 Sector Mapping Mechanism
Sector log provides sector-level management of data by

mapping logical sector numbers to physical locations in the
sector data region. Sector map is used to locate physical
sectors only in the sector data, and the FTL will use its own
map to manage its data region at page granularity. The
sector map uses a hash-based index structure for fast look-
ups, with logical page numbers as hash keys [21].

Figure 4 shows the sector map organization. The sector
map has n entries indexed by hashed logical page numbers.

Each entry in the sector map has physical locations of all
sectors in the same logical page (m sectors in a page in
the figure). Each entry also has the original logical page
number and a pointer to the next entry for resolving hash
collisions. The page-grouped map allows fast searching of
all the sectors in a logical page. When a sector is evicted
from the sector data region and moved to the FTL layer, all
the other sectors belonging to the same logical page must be
searched in the sector map. The page-grouped map makes
the sector search efficient, as looking up an entry will provide
the locations of all the other sectors if they exist in sector
log.

4.3 Examples
The examples in this section assume that a page has four

sectors. Figure 5 describes write, read, and flush operations
of sector log. In the figure, each sector map entry has the
physical locations of four sectors. A physical location is
represented in three numbers, block number, page number,
and offset (block:page:offset).

Write: Figure 5 (a) shows two sub-page writes issued to
sector log. The first write is to logical sector number (LSN)
0 and its size is one sector. The second write is to LSN 4
and its size is three sectors. (1) The two sub-page writes
are stored in the page buffer. (2) Since the page buffer is
full, a page holding the two writes is sent to the free page 0
of block 0. (3) The sector map points to the new physical
locations of the two sub-page writes. In the figure, the logical
page numbers (LPNs) of the two sub-page writes are 0 and
1 respectively. The map entries corresponding to the two
LPNs point to page 0 of block 0.

Read: Figure 5 (b) describes the processing of a read re-
quest to LSN 0. The request size is 4 sectors. (1) Sector log
looks up the page buffer. (2) If there is no data correspond-
ing the read request, sector log searches the sector map by
LPN 0 (LSN 0 is in page 0). The read request accesses mul-
tiple sectors, and the data are in physical page 0 and page 1
of block 0. (3) Sector log processes two read operations on
the two physical pages.

Flush & Merge: If there is no free page in the sector
data region, a flush operation must start to make free pages,
as shown in Figure 5 (c). (1) Sector log selects block 0
as a victim block, and searches valid pages in the victim
block. The valid pages are physical page 0 and page 1. (2)
Sector log reads the data in page 0 and 1 corresponding
to LPN 0. (3) Sector log reads the data in page 0 and 1
corresponding LPN 1. (4) Sector log merge the data for two
pages and transfer them to the underlying FTL. For wear-
leveling, sector log exchanges the erased block with a free
block from the FTL, to use the wear-leveling technique of
the FTL.

4.4 Localities of Sector Log
Sector log must reduce the total writes to the flash mem-

ory used both for sector log and FTLs. The total writes from
the host (Writeshost) consists of full-page writes (Writesfull)
and sub-page writes (Writessubpage).

Writeshost = Writesfull + Writessubpage

Sector log stores only the data of sub-page writes. WritesSL

is the number of writes to the sector data region in sector log.
Full-page writes from the host are directly sent to the FTL
(Writesfull). With sector log, the total number of writes

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

2

3

1
lpn

0
1
2
3

1
0

0
1
2
3

0

0 4 8 12

Logical sector number

Page Buffer
(DRAM)

Sector Map (DRAM) Sector Data (NAND)

S
ector index

Block #0

1 null

0:0:0
null
null
null

null
0:0:1
0:0:2
0:0:3

null

datappn

(a) Write

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

1

2

3

lpn

1
0

0:1:0
0:0:0

0:1:1
0:1:2

0
1
2
3

null

null0

0
1
2
3

0:0:1
0:0:2
0:0:3

0:1:3

Read (0, 4) request

(DRAM)

Sector Data (NAND)Sector Map (DRAM)

Block #0

S
ector index

Page Buffer

1
datappn

(b) Read

���
���
���

���
���
���

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2

3

1

4

lpn 0
0:0:00

1
2
3

0
1

3

0:0:2
0:0:3
0:1:3

0:0:1

0:1:2
0:1:1
0:1:0

Sector Map (DRAM)

Page Buffer
(DRAM)S

ector index

null

null

1
1
0

Block #0
Sector Data (NAND)

ftl_write

2

datappn

(c) Flush

Figure 5: Sector Log Example

to the flash memory in an SSD is the sum of direct writes
to the FTL (Writesfull), writes to sector log (WritesSL),
and evicted pages from sector log (EvictsSL). The evicted
pages are written to the FTL. This model does not include
the writes by garbage collection, which varies by FTL de-
signs.

WritesSSD = Writesfull + WritesSL + EvictsSL

For sector log to be effective, WritesSSD must be less
than the number of writes from the host (Writeshost), and
sector log must reduce WritesSL and EvictsSL as much as
possible. WritesSL depends on how many sub-page writes
are accumulated as one page in the page buffer and written
to sector log together. Without sector log, every sub-page
write must be a full-page write to the FTL. Sector log com-
bines sub-page writes in the page buffer and writes once to
the sector data region. Suppose that the average request size
(in sectors) for all the sub-page writes is SectorSizeavg, and
the number of sectors in a page is Nsectors. If the number of
sub-page writes is Writessubpage, WritesSL is represented
as follows:

WritesSL = Writessubpage ×
SectorSizeavg

Nsectors

For example, with 512B sector and 4KB page, if the aver-
age sector size for all the sub-page writes is 2 sectors, then
WritesSL is Writessubpage/4. In the example, the number
of writes to sector log becomes a quarter of the number of
the original sub-page writes. As the average size of sub-page
writes is smaller, sector log becomes more effective to reduce
the total writes.

The second important factor for the effectiveness of sec-
tor log is EvictsSL. For the sectors stored in sector log,
EvictsSL represents how many pages are evicted to the FTL
due to the limited capacity of sector log. Sector log attempts
to minimize EvictsSL by exploiting localities existing in sub-
page writes. Sector log relies on two localities, temporal and
spatial localities.

Temporal Locality: Sector log reduces EvictsSL if many
incoming sub-pages writes hit the stored sectors in sector
log. If a sub-page write hits in sector log, the new sectors
will be written to the head of the sector data. The old lo-
cation of the same sectors in sector log becomes obsolete.
When the block containing the obsolete sectors is cleaned,
the obsolete sectors are just discarded, without any eviction
to the FTL. Therefore, as more sub-page writes hit sector
log, EvictsSL is reduced.

Spatial Locality: Sector log attempts to merge sectors

from the same page into a full page write. Such merging will
be effective, if the host updates the rest of the page while the
sectors from the initial sub-page writes are still in the data
region of sector log. For example, suppose that four separate
writes to different sectors of the same page are written to
sector log. When a block containing one of the sector is
cleaned, all the sectors are merged and evicted to the FTL
as a write request. As more sector writes for the same page
are merged until they are evicted to the FTL, EvictsSL

decreases. An indirect metric to show the spatial locality
is the average write size (in sectors) of the evicted data from
sector log. As there is more spatial locality, the average
write size of the evicted data will increase compared to the
average write size from the host. In Section 5.2, to analyze
the existing localities in the workloads, we will present hit
ratios to sector log and the average write size for evicted
pages from sector log.

5. EVALUATION

5.1 Evaluation Environment
To simulate SSDs, we use a trace-driven simulator, which

models several types of FTLs, a DRAM buffer, and NAND
flash packages [16]. The simulator processes each request
serially, and measures the elapsed time for processing all
the requests in traces. We extended the simulator to add
the support for sector log. In more details, the simulator
counts the number of operations from DRAM, sector log,
and NAND flash memory such as page read/writes, block
erases, DRAM accesses for processing a given trace. The
simulator calculates the total elapsed time by multiplying
latency of each operation shown as Table 1.

In this paper, we use two real workload traces and a
synthetic workload trace. The characteristics of traces are
shown in Table 4. Financial [1] and TPC-C [2] represent
OLTP environments. The Financial trace is collected from
a financial OLTP application, and TPC-C is from an OLTP
benchmark from TPC. Both traces represent applications
which may have many sub-page writes. We collected the
trace for General from desktop activities such as surfing
webs, writing documents, copying and moving multimedia
files for 5 days [16]. The DRAM buffer and sector map share
64MB DRAM. The total flash memory capacity is as large
as the block address space of each trace with 3% of extra
capacity as an over-provisioning space for effective garbage
collection. To simulate the effect of garbage collection with
warmed-up SSDs, the simulator processes traces twice be-
fore measuring results. To show the effectiveness of sector

Page
Sector log Sub-page Hit Ratio / Average Size

Size General Financial TPC-C

4KB

0 MB 0% 3.79 0% 3.12 0% 2.82
128 MB 65.2% 4.81 42.3% 4.53 12.3% 3.02
256 MB 77.5% 4.81 49.9% 4.75 22.4% 3.18
512 MB 99.8% 0.0 99.6% 0.0 34.1% 3.39
1024 MB 99.8% 0.0 99.6% 0.0 46.9% 3.66

8KB

0 MB 0% 7.14 0% 4.94 0% 3.47
128 MB 51.0% 9.29 34.0% 8.09 12.3% 3.95
256 MB 63.7% 9.91 50.3% 8.40 21.8% 4.30
512 MB 99.8% 0.0 70.9% 8.07 32.9% 4.77
1024 MB 99.8% 0.0 99.8% 0.0 45.0% 5.40

16KB

0 MB 0% 13.1 0% 7.70 0% 3.94
128 MB 42.8% 17.4 34.3% 14.1 12.5% 4.94
256 MB 51.2% 18.6 50.2% 14.6 21.3% 5.60
512 MB 65.6% 19.7 58.2% 15.5 31.5% 6.54
1024 MB 99.8% 0.0 99.9% 0.0 42.9% 7.82

32KB

0 MB 0% 23.2 0% 11.3 0% 4.23
128 MB 37.7% 30.2 34.0% 23.0 11.9% 6.12
256 MB 43.8% 33.6 44.2% 25.6 20.2% 7.32
512 MB 56.3% 36.4 59.3% 27.1 29.8% 9.10
1024 MB 68.7% 37.9 79.9% 23.4 40.8% 11.6

Table 2: locality of sector log with various page size

Page
Sector log Read / Write

Size General Financial TPC-C

4KB

128 MB 1.089 0.989 1.147 0.979 1.498 1.170
256 MB 1.092 0.984 1.153 0.973 1.651 1.047
512 MB 1.073 0.976 1.182 0.937 1.843 0.910
1024 MB 1.073 0.967 1.182 0.937 2.031 0.776

8KB

128 MB 1.226 0.986 1.199 0.951 1.482 0.989
256 MB 1.241 0.977 1.221 0.932 1.664 0.854
512 MB 1.242 0.956 1.253 0.911 1.903 0.713
1024 MB 1.242 0.956 1.290 0.878 2.143 0.581

16KB

128 MB 1.473 0.979 1.232 0.888 1.456 0.823
256 MB 1.538 0.967 1.282 0.861 1.648 0.680
512 MB 1.605 0.951 1.313 0.847 1.896 0.539
1024 MB 1.652 0.919 1.400 0.786 2.136 0.414

32KB

128 MB 1.860 0.965 1.244 0.790 1.415 0.675
256 MB 2.001 0.944 1.289 0.757 1.598 0.528
512 MB 2.131 0.919 1.362 0.725 1.851 0.393
1024 MB 2.408 0.900 1.442 0.695 2.106 0.283

Table 3: Normalized request counts with each page

size

log with an FTL, we use the DAC FTL [4]. DAC uses a
page mapping scheme, and maintains multiple separate re-
gions for efficient hot-cold separations. Using a page map-
ping scheme, DAC handles random writes more efficiently
than BAST [11] and FAST [15] FTLs, while it requires more
DRAM for the page map.

5.2 Access Hit Rates and Average Write Size
As discussed in Section 4.4, the effectiveness of sector log

depends on two factors, temporal and spatial localities. In
Table 2, we show two metrics for localities: hit ratio for
temporal locality, and the average write size of evictions (the
number of sectors per eviction) for spatial locality. Firstly,
the hit ratios show how often sub-page writes hit the sectors
already stored in sector log. As more hits on sector log occur,
less valid sectors are evicted from the sector log, reducing
the number of writes to the flash memory managed by the
FTL. Secondly, the average write size of evictions shows how
many sub-page writes to the same page are merged while
they are in sector log. If there is no eviction from sector log,
the average write size is zero.

General and Financial show high hit ratios of 77.5% and
49.9% with a modest 256MB sector log in 4KB page size.
In the General workload, more than 77% of incoming sub-

Trace Addres Space Request Size Read Write
Financial 11.7GB 25.6GB 36% 64%
TPC-C 29.5GB 307.7GB 86% 14%
General 18.3GB 22.4GB 39% 61%

Table 4: The characteristics of traces

page writes from the host are absorbed in sector log. For
4KB page, the sub-page writes of General and Financial fit
in a 512MB sector log, without any eviction from sector
log. Since sector log stores only sub-page writes, with a
relatively small log size of 512MB, sector log can keep all
the sub-page write data for the two traces for 4KB page
size. However, as the page size increases to 32KB, sector
log can no longer hold the working set of sub-page writes,
since sub-page writes increase significantly. TPC-C shows
relatively low hit rates for all page sizes. With a 1024MB
sector log, 46.9% of sub-page writes hit in sector log with
4KB page size. In general, the benchmarks traces have a
high temporal locality with 256MB-1GB sector logs. The
results show that sector log can absorb a significant portion
of sub-page write data, minimizing the eviction to the FTL.

The average write size of evicted sub-page writes increases
as the sector log size increases, showing that with more ca-
pacity, the sector log can hold sector data longer to exploit
more spatial locality. For General and Financial, a small
128MB sector log can extract most of the available spatial
locality. However, TPC-C requires a large 1GB sector log,
to effectively merge the sectors from the same page, due
to the large working set of sub-page writes. As the page
size increases, sector log can extract more available spatial
locality.

5.3 Read and Write Count Changes
In this section, we show how many write and read opera-

tions sector log adds or reduces. Table 3 shows the sum of
the total read or write operations in the sector log and FTL
regions, excluding read and write operations generated by
garbage collection. The read and write overheads of garbage
collection vary by FTL designs, and in this section, we eval-
uate only the FTL-independent aspect of sector log. In the
Table 3, read and write counts are normalized to a base SSD
without sector log.

In general, sector log increases the number of read oper-
ations in the sector log and FTL data regions, but reduces
write operations. In SSDs, each write causes much more
read and write operations later for garbage collection, which
are not included in the table. The write reductions are sig-
nificant for TPC-C, by 23% with 4KB page, and by 71%
with 32KB page. In the next section, we will show how the
reduction of writes actually improves the overall throughput.

For the General and Financial traces, sector log does not
reduce writes significantly with 4KB and 8KB page sizes.
It is because a small DRAM buffer already filters out many
sub-page writes, as the first working sets of sub-page writes
are small in the two traces. However, with 16KB and 32KB
pages, the reductions increase, by 21% with 16KB page and
by 30% with 32KB page in Financial. For those two traces,
a modest size of sector log, with less than 512KB, can reduce
writes effectively.

As the most of the write requests in TPC-C are sub-page
writes, TPC-C shows significant reductions of writes even
with 4KB page. However, in TPC-C, sector log requires a

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

w
/
o

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 16 32

T
o
t
a
l

E
l
a
p
s
e
d

T
i
m
e

(
s
e
c
)

The size of a page (KB)

[FTL] Read
[FTL] Write
[GC] Read
[GC] Write
[GC] Erase
[SL] Read
[SL] Write
[SL] Erase

(a) General

 0

 2000

 4000

 6000

 8000

 10000

 12000

w
/
o

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 16 32

T
o
t
a
l

E
l
a
p
s
e
d

T
i
m
e

(
s
e
c
)

The size of a page (KB)

(b) Financial

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

w
/
o

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 16 32

T
o
t
a
l

E
l
a
p
s
e
d

T
i
m
e

(
s
e
c
)

The size of a page (KB)

(c) TPC-C

Figure 6: Total elapsed times with DAC FTL

large data capacity to absorb enough sub-page writes. TPC-
C requires at least 1024MB of data capacity for sector log to
reduce write operations in flash memory significantly. This
requirement for a large capacity re-affirms that a small sepa-
rate DRAM buffer for sub-page writes is not effective enough
for TPC-C.

5.4 Performance of Sector Log
Figure 6 presents the elapsed times with sector log com-

bined with the DAC FTL [4]. The elapsed times are further
divided to reads and writes to the FTL; reads, writes, and
erases for garbage collection; and reads, writes, and erases
for sector log.

Firstly, the results show that the total elapsed times de-
crease as the page size increases. With a large page size, the
FTL can write and read a large chunk of data at once, im-
proving the overall throughput. The performance improve-
ments by increased page sizes are significant for General and
Financial even without sector log, since their writes can be
merged easily to large page sizes. However, TPC-C shows
modest reductions of execution times, since the workload
issues many sub-page writes in random patterns.

As discussed in Section 5.3, without the effect of garbage
collection, using sector log reduces write operations, but in-
creases reads. However, after including read operations for
garbage collection, sector log reduces the total reads to flash
memory, since it reduces the occurrence of garbage collec-
tion processes. The garbage collection often requires reading
multiple pages to copy valid pages from a victim block. The
overheads of such valid page copy are significant in SSDs,
and increase as the number of writes to SSDs increases. Fig-
ure 6 shows that sector log reduces the erase, read, and write
operations for garbage collection significantly for all traces.

The TPC-C results in Figure 6(c) show the benefit of sec-
tor log clearly. The performance improves significantly, by
126% with 8KB page size. The benefit of sector log in-
creases with larger page sizes. Not only the read and write
operations in the FTL decrease, but also, the overheads for
garbage collection reduce significantly. Sector log degrades
performance, if the size of sector log is 128MB and the page
size is 4KB. It is because the sub-page write working set of
TPC-C is much larger than the other traces and the 128 MB
sector log is not large enough to absorb it.

5.5 Sector Log Overheads
Sector log incurs two types of overheads. The first type is

the overhead in memory usage to maintain the sector map

Trace 4KB 8KB 16KB 32KB
Financial 1.8MB 2.7MB 4.4MB 6.8MB
TPC-C 16.2MB 20.1MB 26.8MB 35.4MB
General 4.2MB 5.6MB 7.6MB 9.7MB

Table 5: Memory usage for sector map

Trace 4KB 8KB 16KB 32KB
Financial 1.2 1.3 1.4 1.6
TPC-C 1.9 2.1 2.4 2.8
General 1.1 1.1 1.2 1.4

Table 6: Average hash search counts per request

in DRAM. As shown Table 5, the amount of memory used
for the sector map is small, under 36MB. For 4KB page, Fi-
nancial uses only 1.8MB, while General uses 4.2MB. As the
page size increases, the memory usage increases since writes
to more pages become sub-page writes. In the experiments
for this paper, we share the limited DRAM both for sector
map and a DRAM buffer, not to give an unfair advantage to
sector log. TPC-C uses a relatively large amount of memory
for the sector map. However, the DRAM buffer is quite inef-
fective for TPC-C due to low locality in the DRAM buffer,
and using the DRAM space for the sector map results in
better performance.

The other overhead is searching the sector map. The sec-
tor map uses a hash index structure for storing mapping
information, using linked lists to resolve hash collisions. As
shown Table 6, the hash searches take on average only 1-
2 linked list traversals, except for TPC-C with larger than
4KB page sizes (3 traversals)

6. RELATED WORK
To the best of our knowledge, this work is the first study to

use part of flash memory at sector granularity when the page
size is much larger than 512B. The page sizes of early flash
implementations were as small as the sector size, and with
such sector-unit flash, some FTLs could support sector-level
mapping [15]. However, with the current capacity-optimized
flash memory, the page size is much larger than the sector
size.

Several different ways to implement dynamic mappings for
FTLs have been proposed. A page-mapping FTL consumes
a large amount of memory but improves SSD performance by
reducing the costs of garbage collection. Using such page-
mapping, Chiang et al. segmented NAND flash memory
into regions to improve hot-cold separation [4]. Gupta et al.

proposed to cache the page mapping information on demand
to reduce memory usage [7]. Although block-mapping FTLs
use much less memory than page-mapping FTLs, they suffer
some performance degradation compared to page-mapping
FTLs [17]. Hybrid-mapping FTLs combine page-mapping
and block-mapping in an FTL [9, 16]. As a hybrid-mapping
FTL, BAST FTL provides block-level associativity, using
a log block associated to a data block [11]. FAST FTL
uses a fully-associative log buffer, relaxing the log mapping
restriction of BAST [15].

There have been several studies on DRAM write buffers
to reduce the cost of handling writes to flash memory. The
write buffer can merge incoming writes and evicts pages in
the same block to the FTL [8, 10]. Such buffering mecha-
nism can be optimized to evict clean pages rather than dirty
pages [19].

7. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a new sector-level logging ar-

chitecture to alleviate the overheads of sub-page writes in
SSDs. Sector log efficiently stores sub-page writes at sector
granularity in flash memory. Exploiting the spatial and tem-
poral localities of sub-page writes in applications, sector log
reduces write traffics to the underlying FTL-managed flash
memory. The decrease of write traffics reduced not only the
write bandwidth consumption, but also the occurrences of
expensive garbage collection processes.

Based on this architecture, we are extending our study
to investigate crash-recovery and wear-leveling. Sector log
can use spare area in flash memory to store logical addresses
to recover from a crash. In case that the spare area is too
small to fit the entire sector address, a small part of data
area can be used for recovery addresses. For wear-leveling,
sector log uses the mechanism provided by the underlying
FTL. Sector log receives free blocks from the FTL and return
victim blocks to the FTL. Therefore, as the FTL manages
free blocks for wear-leveling, sector log does not need to
directly address wear-leveling issues. However, investigating
further optimizations of wear-leveling techniques for sector
log will be our future work.

8. REFERENCES

[1] OLTP Trace from UMass Trace Repository.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[2] The Transaction Processing Performance Council.
http://www.tpc.org.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. S. Manasse, and R. Panigrahy. Design tradeoffs for
SSD performance. In Proceedings of USENIX Annual

Technical Conference, ATC 2008, pages 57–70.

[4] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using
Data Clustering to Improve Cleaning Performance for
Flash Memory. SoftwareâĂŤPractice and Experience,
29(3):267–290, 1999.

[5] E. Deal. Trends in NAND Flash Memory Error
Correction, 2009.

[6] S. Electronics. NAND Flash-based Solid State Disk
Module Type Product Data Sheet, 2007.

[7] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In

Proceedings of ACM International conference on

Architectural support for programming languages and

operating systems, ASPLOS 2009, pages 229–240.

[8] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee.
FAB: Flash-aware Buffer Management Policy for
Portable Media Players. IEEE Transactions on

Consumer Electronics, 52(2):485–493, 2006.

[9] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A
Superblock-based Flash Translation Layer for NAND
Flash Memory. In Proceedings of ACM International

conference on Embedded software, EMSOFT 2006,
pages 161–170, 2006.

[10] H. Kim and S. Ahn. BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash
Storage. In Proceedings of USENIX Conference on File

and Storage Technologies, FAST 2008, pages 239–252.

[11] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A
Space-efficient Flash Translation Layer for
CompactFlash Systems. IEEE Transactions on

Consumer Electronics, 48(2):366–375, 2002.

[12] J.-H. Kim, D. Jung, J.-s. Kim, and J. Huh. A
Methodology for Extracting Performance Parameters
in Solid State Disks (SSDs). In Proceedings of IEEE

International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication

Systems, MASCOTS 2009, pages 1–10.

[13] J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J. Choi,
D. Lee, and S. H. Noh. Block Recycling Schemes and
Their Cost-based Optimization in NAND Flash
Memory Based Storage System. In Proceedings of the

ACM International conference on Embedded software,

EMSOFT 2007, pages 174–182.

[14] S.-W. Lee, B. Moon, and C. Park. Advances in Flash
Memory SSD Technology for Enterprise Database
Applications. In Proceedings of ACM International

conference on Management of data, SIGMOD 2009,
pages 863–870.

[15] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A Log Buffer-based Flash
Translation Layer Using Fully-associative Sector
Translation. ACM Transactions on Embedded

Computing Systems, 6(3):18, 2007.

[16] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim. µ-FTL::
A Memory-efficient Flash Translation Layer
Supporting Multiple Mapping Granularities. In
Proceedings of ACM International conference on

Embedded software, EMSOFT 2008, pages 21–30.

[17] M-Systems. Flash-memory Translation Layer for
NAND flash (NFTL), 1998.

[18] J. Nq. IMFT’s 25nm NAND Flash Will Cut
Production Costs in Half, Spur New SSDs, 2010.

[19] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee.
CFLRU: A Replacement Algorithm for Flash Memory.
In Proceedings of the ACM International conference

on Compilers, architecture and synthesis for embedded

systems, CASES 2006, pages 234–241.

[20] G. J. Powell. Oracle High Performance Tuning for 9i
and 10g, 2003.

[21] T. Wang. Integer Hash Function.
http://www.concentric.net/ Ttwang/tech/inthash.htm,
2007.

