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ABSTRACT

Cloud computing based on system virtualization, has been
expanding its services to distributed data-intensive platforms
such as MapReduce and Hadoop. Such a distributed plat-
form on clouds runs in a virtual cluster consisting of a num-
ber of virtual machines. In the virtual cluster, demands
on computing resources for each node may fluctuate, due
to data locality and task behavior. However, current cloud
services use a static cluster configuration, fixing or manually
adjusting the computing capability of each virtual machine
(VM). The fixed homogeneous VM configuration may not
adapt to changing resource demands in individual nodes.

In this paper, we propose a dynamic VM reconfiguration
technique for data-intensive computing on clouds, called Dy-
namic Resource Reconfiguration (DRR). DRR can adjust
the computing capability of individual VMs to maximize
the utilization of resources. Among several factors causing
resource imbalance in the Hadoop platforms, this paper fo-
cuses on data locality. Although assigning tasks on the nodes
containing their input data can improve the overall perfor-
mance of a job significantly, the fixed computing capability
of each node may not allow such locality-aware scheduling.
DRR dynamically increases or decreases the computing ca-
pability of each node to enhance locality-aware task schedul-
ing. We evaluate the potential performance improvement of
DRR on a 100-node cluster, and its detailed behavior on a
small scale cluster with constrained network bandwidth. On
the 100-node cluster, DRR can improve the throughput of
Hadoop jobs by 15% on average, and 41% on the private
cluster with the constrained network connection.
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1. INTRODUCTION
Recently, cloud computing has been replacing traditional

privately owned clusters, as it can provide high efficiency
from the economies of scale and elastic resource provision-
ing. Such cloud computing has been expanding its services
to data-intensive computing on distributed platforms such
as MapReduce [10], Dryad [12], and Hadoop [2]. In such
distributed platforms on clouds, physical machines are vir-
tualized, and a large number of virtual machines (VMs) form
a virtual cluster. A data-intensive platform runs on the vir-
tual cluster instead of a traditional physical cluster. Such
a virtual cluster can provide a highly flexible environment,
which can scale up and down accommodating changing com-
putation demands from various users. Cloud providers con-
solidate virtual clusters from different users into a physical
data center, to maximize the utilization of resources.

Current virtual clusters for data-intensive computing can
support the flexibility of selecting the type of computing
nodes and the number of nodes in a cluster, when the clus-
ter is configured. Users can choose the most appropriate
virtual cluster configuration to meet their computational re-
quirements. Although such a static configuration of each
virtual machine in the cluster can still provide better flexi-
bility than clusters with physical machines, the static con-
figuration cannot satisfy dynamically changing computing
demands during the life time of a virtual cluster. To adapt
to changing demands on each VM in a virtual cluster, each
VM may be dynamically reconfigured. Current virtualiza-
tion techniques can support such a dynamic reconfiguration
of each virtual machine using resource hot-plugging. As long
as physical resources are available, each virtual machine can
be assigned with more virtual CPUs and memory while the
virtual machine is running. However, the currently available
cloud services, such a dynamic reconfiguration of VM is not
available,

In the distributed data-intensive computing platforms, re-
sources required for each node may not be uniform. In
such platforms, a user job is decomposed into many small
tasks, and the tasks are distributed across computing nodes
in the cluster. One of the most critical reasons for un-
even resource usages is data locality. Input data are dis-



tributed across computing nodes using distributed file sys-
tems, such as Google File System (GFS)[9] or Hadoop File
Systems (HDFS). Depending on whether a task is assigned
to a node with its data (local task or non-local task), the exe-
cution time of the task may differ significantly. Prior studies
showed that data locality affects the throughput of Hadoop
jobs significantly, and they improve the locality by assigning
tasks to the nodes with the corresponding data as much as
possible [19]. However, to improve locality, when a task is
scheduled, the computing node with the corresponding data
must have available computing slots to process the task. If a
computing slot is not available, the task must be scheduled
to a remote node, which must transfer necessary data from
another node for the task.

In this paper, we propose a dynamic VM reconfiguration
technique, called Dynamic Resource Reconfiguration (DRR)
for virtual clusters running the Hadoop platform. The tech-
nique can change the configuration of virtual computing
nodes dynamically to maximize the data locality of tasks.
The proposed technique increases the computing resource of
a VM, if the next task has its data on the VM. Simulta-
neously, an idle virtual CPU is removed from another VM
in the same virtual cluster, so that the size of the virtual
cluster remains constant to provide a constant cost for the
user. This dynamic reconfiguration of each VM improves
the overall job throughput by improving data locality, while
the total virtual CPUs in the cluster remain unchanged.

However, to add a virtual CPU to a VM for a newly sched-
uled local task, the physical system running the VM must
have additional available CPU resources. Cloud providers
may reserve some headroom for such a temporary increase of
CPU demand in each physical system. Our first DRR sched-
uler, called Synchronous DRR, assumes the availability of
such extra CPU resources in each physical system. Alterna-
tively, we also propose a DRR scheduler, called Queue-based
DRR, which can eliminate the CPU headroom completely.
The scheduler coordinates the allocation and deallocation
of virtual CPUs from different physical systems. Virtual
clusters sharing the physical cluster, can exchange CPU re-
sources, by deallocating virtual CPUs from a node without
local tasks, and by allocating virtual CPUs to a node with
pending local tasks. Our results show that such an exchange
incurs only minor delays in executing tasks.

To the best of our knowledge, this paper is one of the
first studies to dynamically reconfigure individual VMs in a
virtual cluster running distributed data-intensive platforms.
Each user may just limit the total resource size of a virtual
cluster, while the configuration of each VM is dynamically
determined by changing resource demands for the VM. Us-
ing a 100-node Amazon EC2 [1] cluster, we evaluate the po-
tential performance improvement by locality-aware dynamic
VM reconfiguration. With the Hive benchmark [5] running
on the Hadoop and HDFS platforms, locality-aware recon-
figuration can improve the overall throughput by 15% on
average. On a small scale private cluster with a limited net-
work bandwidth, dynamic reconfiguration can improve the
throughput by 41% on average.

Another source for uneven data demands is that different
jobs may have different resource usages. For example, some
jobs require more CPU resources, while others need more
memory or I/O bandwidth. Although this paper focuses
only on mitigating load imbalance caused by data locality,
DRR can be generalized to other dynamic resource imbal-

Figure 1: MapReduce on virtualized environments

ance among VMs, adjusting the configuration of each VM
for changing demands.

The rest of this paper is organized as follows. Section 2
presents motivation for dynamic VM reconfiguration to im-
prove data locality in data-intensive platforms. Section 3
describes the overall architecture of DRR and its reconfigu-
ration policies. Section 4 evaluates the effectiveness of DRR
with two different cluster environments. Section 5 presents
prior work on VM reconfiguration and data-intensive plat-
forms, and Section 6 concludes the paper.

2. MOTIVATION

2.1 Dynamic VM Reconfiguration

In cloud computing, system virtualization allows flexi-
ble resource management by allocating virtual machines,
instead of physical systems, to cloud users. With virtual-
ization, each user has an isolated secure computing envi-
ronment, even though multiple users may share physical re-
sources to improve the utilization of physical systems. Sys-
tem virtualization has been extended to a virtual cluster,
which consists of multiple virtual machines, for distributed
computing platforms. Instead of using physical systems di-
rectly, data and computation in such data-intensive plat-
forms are distributed across a large number of virtual ma-
chines. Figure 1 depicts multiple virtual clusters running
MapReduce platforms sharing the same physical cluster.

To configure virtual clusters, current public or private
clouds use a homogeneous static configuration of virtual ma-
chines. When a virtual cluster is created, a user selects a
type of virtual machines with a fixed number of virtual cores
and a fixed memory size, and determines the number of vir-
tual machines, by considering the overall cost of using the
virtual cluster. One drawback of such a static configura-
tion is that the resources required for each virtual machine
may fluctuate during the life time of the virtual cluster. A
virtual machine may require more CPU resources while an-
other virtual machine needs more memory. Such a dynamic
imbalance of resources in individual virtual machines, leads
to the overall inefficiency of cluster resources.

In traditional data-intensive computing on physical clus-
ters, it is not possible to change physical resources dynami-
cally, as each physical system has a fixed amount of physical
resources. In such physical clusters, numerous studies for
data-intensive computing have tried to maximize the uti-



lization of fixed physical resources by efficiently distributing
loads on the nodes [10, 12, 2, 16, 4, 3]. A job is partitioned
into small tasks, and evenly distributed to across comput-
ing nodes for load balancing. However, such a perfect load
balancing may not be possible, as different jobs or tasks
have different resource requirements. Furthermore, as will
be discussed in the next section, data locality often makes a
naive uniform distribution of tasks, inefficient for the overall
throughput of the platform.

However, virtualization opens a novel opportunity to re-
configure virtual machines constituting a virtual cluster. Mul-
tiple virtual clusters share a set of physical machines, and
within a physical system, multiple virtual machines for the
same or different users co-exist. Exploiting the flexibility of
virtualization, resources allocated for each virtual machine
can be dynamically reconfigured by resource hot-plugging.
For example, the number of virtual CPUs for a virtual ma-
chine can change while the virtual machine is running, or
the size of allocated memory can also change with balloon-
ing techniques[18].

The dynamic reconfiguration of virtual machines allows
resources to be provisioned to demanding nodes. This can
make traditional load balancing less critical in distributed
platforms, as resources in each VM become flexible. This
leads to a shift of cloud service from provisioning of a fixed
set of virtual machines, to a cluster-level resource provision-
ing. Users just need to select the total amount of resources
for a given cluster, and each virtual machine can be recon-
figured during the runtime to maximize the performance of
users’ workloads.

There are two important factors causing unbalanced loads
in distributed data-intensive platforms. Firstly, data local-
ity requires flexible CPU resources in computing nodes. For
load balancing, incoming task must be evenly distributed
across different nodes. However, such a pure load-balanced
scheduling of tasks can lead to the ignorance of data local-
ity, causing expensive data transfer for non-local tasks. To
maintain data locality, the virtual machine, which has data
for an incoming task, may increase its computational capa-
bility temporarily to process the task.

Secondly, each MapReduce job or task has a different
resource requirement. For example, certain tasks require
more CPUs and others require more memory or I/O band-
width. Users cannot predict the resource requirement pre-
cisely when a virtual cluster is configured. If virtual ma-
chines can be dynamically reconfigured for tasks, the cloud
provider can relieve users from the burden of selecting the
most efficient cluster configuration. In this paper, we focus
on the data locality problem for VM reconfiguration, leav-
ing the generalized VM reconfiguration as future work. In
the next section, we elaborate the data locality problem in
distributed data-intensive platforms.

2.2 Data Locality in MapReduce

The data locality problem occurs in MapReduce platforms
since input data are distributed in computing nodes, using
a distributed file system, such as Google File System [9]
or Hadoop File System. A user job is partitioned to tasks
which process a block of data. The block size is commonly
configured to 64MB or 128MB. The entire data set is also
partitioned at the block granularity and is distributed in the
computing nodes. To improve the reliability and locality of
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Figure 3: Data locality for various workloads with

different numbers of map tasks at a 100-node cluster

input data, they are often replicated and stored in multiple
computing nodes.

A MapReduce job is composed of three phases, map, shuf-
fle, and reduce. The master schedules map and reduce tasks
to free computing slots identified by heartbeats from slave
nodes. Each slave sends a heartbeat every few seconds which
announces that it can handle a new task if it has a free slot.
Each slave node has a fixed number of map and reduce slots,
which are proportional to the available computation capa-
bility, commonly one or two slots per core.

After receiving a heartbeat, the master assigns a new task
to the slave node according to its scheduling policy. To im-
prove data locality, the master scheduler attempts to assign
a map task, which processes the data stored in the node with
an available slot. However, it is not always possible to find
such a local task to the node. As reduce tasks commonly
receive data equally from all nodes, the data locality is less
critical for reduce tasks than for map tasks.

If data locality is not satisfied in the node with a free slot,
the node should read input data for computation through
network, incurring significant network overheads. Such a
remote data transfer for a map task, not only delay the exe-
cution time of the map task, but also increase network traffic
in the cluster, negatively affecting other tasks running in the
cluster. Although reduce tasks do not exhibit a significant
data locality, as it receives intermediate data from all the
nodes, the reduced network traffic from localized map tasks,
can indirectly improve the performance for reduce tasks too.
Therefore, it is critical to assign tasks to the nodes which
have their input data, satisfying data locality.

Figure 2 shows the difference of execution times between
local and non-local tasks. Local tasks get their input data



from local disks during the map phase, while non-local tasks
require data transfers from remote nodes. The results are
measured from a 100-node cluster from Amazon EC2. The
details of the methodology are described in Section 4.1. De-
pending on the locality of input data, task execution times
can increase by as much as 53% in the grep workloads. The
select workloads also exhibit a significant increase of exe-
cution times, if a map task must receive its input data from
a remote node.

Figure 3 presents the ratios of local tasks for various sizes
of MapReduce jobs. As the size of jobs, or the number of
map tasks, increases, the chance to schedule map tasks to
local VMs increases, since the scheduler has many candidate
local map tasks when a slot becomes free in a VM. However,
if a job consists of a small number of map tasks, scheduling
the tasks to local VMs becomes very difficult. In commercial
usage patterns as shown by Zaharia et al [19], such small
jobs account for the majority of jobs running in Facebook.
Their study showed that as a significant portion of real world
workloads are small jobs, with low data locality, improving
the data locality for such jobs is critical for the overall cluster
performance. As the number of nodes increases, the locality
problem for small jobs will become worse, as the data set is
distributed in more nodes.

Fundamentally, the reason why the data locality issue be-
comes a critical problem on MapReduce is that a node of
a MapReduce cluster has a dual role of computing node as
well as data node. Load balancing for computation often
conflicts with data locality. Dynamic VM reconfiguration
mitigates such conflicts between computation load balanc-
ing and data locality, as the reconfiguration can transfer
computational resources to the node with a pending task
and the necessary data for the task. Virtualization enables
such transfers of computation resources from a VM to an-
other VM by dynamically adjusting virtual CPU resources
in two VMs.

3. ARCHITECTURE
In this section, we describe a dynamic reconfiguration

mechanism for virtual clusters to support locality-aware re-
source scheduling. We propose two schemes for the dynamic
VM reconfiguration. The first scheme, synchronous DRR,
can reconfigure VMs only when there are free CPU resources
in physical systems. To support the first scheme, the cloud
provider may need to reserve unassigned CPU slots in each
physical system. The second scheme, queue-based DRR,
does not require such headroom in CPU resources. We
first describe the necessary modifications to virtual clus-
ters to provide dynamic reconfiguration, and present the two
schemes.

3.1 Overview
To support dynamic VM reconfiguration for Hadoop plat-

forms, the cloud provider must offer cluster-level pricing op-
tions to allow users to choose the base VM configuration
and the number of VMs. However, the configuration of a
VM can be dynamically adjusted with more or less virtual
CPUs than the base VM configuration, while the total cores
assigned to the cluster does not change. The dynamic re-
source reconfiguration (DRR) architecture adds or removes
virtual cores in VMs to maximize the data locality of the
Hadoop platform.

To implement DRR, two new components must be added

Algorithm 1 Base Fair Hadoop Scheduler [19]

1: when a heartbeat is received from node n:
2: if n has a free slot then

3: sort jobs in increasing order of the number of running tasks
4: for j in jobs do

5: if j has unlaunched task t with data on n then

6: launch t on n
7: else if j has unlaunched task t then
8: launch t on n
9: end if

10: end for
11: end if

to the current virtual cluster environments. The first com-
ponent is Reconfiguration Coordinator (RC) which is a re-
configuration manager sending allocation and deallocation
requests to the hypervisor running on each physical machine.
A single RC is created for each virtual cluster and the mas-
ter node of each virtual cluster runs the RC. If RC decides
that a virtual machine in the cluster needs resource recon-
figuration, RC sends an allocation or de-allocation request
to Machine Resource Manager (MRM) running in the phys-
ical system, where the VM to be reconfigured is running
on. After receiving requests from RC, MRM re-assigns the
requested virtual CPUs to the VM. MRM makes requests
to the hypervisor of the physical machine, to hot-plug or to
un-plug virtual CPUs for VMs running on the system.

In this section, we propose two possible implementations
of DRR, Synchronous DRR and Queue-based DRR. In the
synchronous DRR, a task is assigned to a VM only when
the physical system running the VM has an available core
to allocate for the VM. Such synchronous reconfiguration
requires free CPU resources in each system on the cloud.
However, in the queue-based DRR, a task can be queued to
a VM, even if the VM does not have an available virtual core
immediately. The queue-based DRR increases the possibil-
ity of maintaining locality by waiting for a possibly short
period time until the locality-matched VM has an available
core. To support the queue-based DRR, MRM maintains
two queues, allocation and deallocation queues (AQ and
DQ). When the scheduler assigns a task to a VM, but the
VM does not have an available slot, the task is appended to
the allocation queue in MRM, waiting for an available core.
If the VMs running the physical system have an idle core,
MRM of the system appends the idle core to the deallocation
queue.

Two proposed DRR implementations are both based on a
näıve Hadoop scheduler for fairness [19]. The scheduler pro-
vides fairness among user jobs, while locality is also marginally
supported. When the scheduler receives a heartbeat from a
node (or VM in a virtual cluster) and the node has a free
slot, it picks a job which has the lowest number of running
tasks in the cluster, to guarantee the fairness among jobs.
For locality, among the tasks in the picked job, the sched-
uler attempts to select a task, whose input data is in the
newly freed node (local task for the node). If the scheduler
cannot find a local task for the node, it attempts to find
a task whose data is in the node of the same rack. Nei-
ther tasks are found for the picked job, the scheduler picks
any task for the free node. Although the Hadoop scheduler
distinguishes local and rack-local tasks, common cloud com-
puting environments often do not support the distinction
between local and rack-local tasks, as the cluster topology



Algorithm 2 Synchronous DRR Algorithm

1: when a heartbeat is received from node n:
2: if n has a free slot then

3: sort jobs in increasing order of the number of running tasks
4: for j in jobs do
5: if j has unlaunched task t with data on n then

6: launch t on n
7: else if j has unlaunched task t then

8: find node set s storing data of t
9: pick a node m from s
10: send resource allocation request to MRM{Pm}
11: send resource de-allocation request to MRM{Pn}
12: launch t on m
13: end if

14: end for

15: end if

is not revealed by the provider. Due to the limitation, this
paper distinguishes a task only into either a local or remote
task. Algorithm 1 describes the base fair scheduler, which
guarantees jobs fairness with limited support for locality.

3.2 Synchronous DRR
Synchronous DRR can dynamically add a virtual core to

a VM, if the VM has input data for a pending task. One re-
striction of the synchronous DRR is that it can add a core to
a VM, only when there is a free CPU resource in the phys-
ical system (target system) the VM is running on. If the
target does not have any available CPU resource, adding a
virtual core to the VM will reduce the CPU shares assigned
to the other virtual cores of the same VM or other VMs. As-
signing more virtual cores than the available CPU resources
can negatively affect other VMs and violate Service Level
Agreement (SLA) for other users. Therefore, it should not
be allowed to add a virtual core to a VM, if the physical sys-
tem does not have an extra core to accommodate the virtual
core to be added.

The synchronous DRR scheduler is based on the base fair
scheduler to support both dynamic reconfiguration and fair-
ness among user jobs. Algorithm 2 presents the synchronous
DRR algorithm, extending the base fair scheduler discussed
in the previous section. In the synchronous DRR algorithm,
when a VM (source VM) has a free slot, the scheduler first
picks a job for fairness, and attempts to pick a local task
for the VM. If no local task is found for the VM, it picks
any task and finds the VM (target VM) with the input data
of the selected task. Once the target VM is selected, the
scheduler in RC sends a CPU allocation request to the tar-
get system. At the same time, the scheduler also sends a
CPU deallocation request to the source system, since the
source VM, which has reported a free slot, does not have a
task to schedule. The CPU allocation and deallocation re-
quests are sent to MRMs in the source and target systems,
and MRMs request the hypervisors to add or remove virtual
cores. If no free core is available in the target system, the
picked task is scheduled to the original source VM, violating
the data locality of the task. By the coordination of RC and
two MRMs in the source and target VMs, a core resource is
transferred from the source VM to the target VM.

The limitation of the synchronous DRR algorithm is that
it is effective only when the system running the target VM
has an available core slot. The cloud provider can increase
the chance of such a readily available CPU resource for
temporary locality guarantee in various ways. The cloud

Figure 4: MapReduce with queue-based DRR

Algorithm 3 Queue-based DRR Algorithm

1: when a heartbeat is received from node n:
2: if n has a free slot then
3: sort jobs in increasing order of number of running tasks
4: for j in jobs do

5: if j has unlaunched task t with data on n then
6: launch t on n
7: else if j has unlaunched task t then

8: find node set sd storing data of t which has entries
on deallocation queue

9: sort sd in decreasing order of number of entries in
deallocation queue

10: if sd is not ∅ then
11: pick m at the top of sorted set sd

12: else

13: find node set sa storing data of t
14: sort sa in increasing order of number of entries

in allocation queue
15: pick m at the top of sorted set sa

16: end if

17: send resource allocation request to MRM{Pm}
18: send resource de-allocation request to MRM{Pn}
19: launch t on m
20: end if
21: end for

22: end if

provider may leave a small portion of core resources as a
headroom for dynamic CPU resource demands. As the num-
ber of cores in a system is expected to increase to tens of
cores in future systems, reserving one or two cores for the
headroom may not degrade the overall throughput. In the
next section, we relax such a constraint of the synchronous
DRR using per-system queues.

3.3 Queue-based DRR
Resource reconfiguration is composed of resource alloca-

tion to the target VM and de-allocation from the source VM.
In the synchronous DRR, an allocation and deallocation of
a core must occur in a coupled manner. An advantage of
the synchronous DRR is that a task is never delayed, as it
is always assigned to a local VM, if possible, but to a re-
mote VM otherwise. If these two virtual machines locate
on the same physical machine, resource reconfiguration be-
tween these virtual machines could be done immediately, but



otherwise, allocating new resources in the physical machine
of target VM may not be possible, if there is no available
CPU resource.

However, to improve the chance to support locality, a task
can be delayed until a core becomes available in the target
node. Instead of synchronously deallocating and allocating
cores in the source and target VMs, the queue-based DRR
allows the decoupling of the two operations. If a VM has a
free slot, it registers the free core to the deallocation queue
(DQ) of the system. If a VM has a pending local task as-
signed by RC, the task is appended to the allocation queue
(AQ) of the system. As soon as both the AQ and DQ of the
same system (MRM) has at least an entry, VM reconfigura-
tions occur in the system, deallocating a core from a VM,
and allocating a core to another VM in the same system.

This delayed task scheduling occurs since the CPU re-
source cannot be transferred beyond the physical system
boundary directly. Even if the system running the source
VM has a free core, the computing resource cannot be di-
rectly available to the target VM. However, with multiple
VMs sharing a physical system, the target system will soon
have a free core, as a task finishes in one of the VMs, and a
local task is not found for the VM.

In the queue-based DRR, such a queuing delay can be an
important factor for cluster performance, as resource utiliza-
tion might be degraded if handling request of the allocation
and de-allocation queue is postponed due to a large queu-
ing delay. In this paper, we use two schemes to reduce the
queuing delay. For the schemes, RC must know the allo-
cation and deallocation queue lengths in all MRMs. The
first scheme attempts to schedule a task to the matching lo-
cal VM in the system with the longest deallocation queue.
Since the system has a pending deallocation request, the VM
for the task can be reconfigured immediately. The second
scheme, if there are no system with pending deallocation
requests, schedules a task to the matching local VM with
the shortest allocation queue. By selecting the system with
the shortest allocation queue, the scheduler avoids increas-
ing the allocation queues unnecessarily. In summary, task
reconfiguration has to be done to the node with the largest
number of deallocation entries, and the smallest number of
allocation entries if there is no node with any deallocation
entries.

Algorithm 3 describes the queue-based DRR algorithm.
The algorithm checks the deallocation queue lengths of sys-
tems first (line 8 and 9), to assign a new task to the system
with any available core. If not available, it checks the short-
est allocation queue to spread tasks across systems in the
cluster. This optimization reduces possible queue delays,
and in Section 4.3, we evaluate the impact of such queue-
aware schemes to improve the queue-based DRR.

The queue-based DRR mechanism overcomes the limita-
tion of the synchronous DRR mechanism, eliminating the
requirement for a CPU headroom in each physical system.
Even with the queue-based DRRmechanism, the cloud provider
can still add the CPU headroom in each machine, to further
reduce possible short queue delays.

4. EVALUATION

In this section, we evaluate the locality and performance
improvements by dynamic VM reconfiguration over the plain
Hadoop platform. To evaluate the effectiveness of DRR in

Job Type # jobs # Maps Intensivity

Grep 30 1 I/O
Select 20 2 I/O
Grep 15 5 I/O
Select 10 10 I/O

Aggregation 5 32 Communication
Grep 5 35 I/O

Inverted Index 5 50 Communication
Select 5 100 I/O

Inverted Index 4 150 Communication
Join 2 200 I/O

Aggregation 2 300 Communication
Grep 2 400 I/O
Join 1 600 Communication

Aggregation 2 800 Communication
Select 1 3000 I/O
Grep 2 5000 I/O

Table 1: Benchmarks on Amazon EC2

a large scale cluster, we use a 100-node Amazon EC2 vir-
tual cluster, in addition to a small private cluster for de-
tailed experiments. Firstly, we evaluate the potential per-
formance improvements by DRR in the setups where addi-
tional cores are always available in each system. We use such
a pseudo-ideal setup, since large-scale experiments on EC2
do not allow system modifications necessary to run a real
queue-based DRR implementation. Secondly, we evaluate
the queue-based DRR on our small scale private cluster.

4.1 Evaluation Methodology

We evaluate our mechanisms in a cluster from Amazon
Elastic Compute Cloud (EC2) as well as our private clus-
ter with 6 physical machines. With Amazon EC2, we use
100 ”High-CPU Extra Large” instances from the provider.
It contains 8 virtual cores and 7GB memory, and supports
high I/O performance. The topology information of the 100
nodes is not available. The 100-node EC2 cluster represents
a relatively large scale virtual cluster, and we use the en-
vironment to show the potential performance and locality
improvements by DRR. One drawback of the EC2 environ-
ment for our study is that it does not allow RC and MRM to
run at the privileged level, as the controls over hypervisors
are not available to guest users. Therefore, we configure our
platform to use 6 cores per VM, and the rest two cores are
reserved for dynamic reconfigurations to absorb temporary
increases of core demands, as discussed in Section 3.2 for
the synchronous DRR. However, the total number of virtual
CPUs actually used for our workloads does not change, even
if each node increases or decreases its core. The EC2 envi-
ronment has the same effect as a synchronous DRR platform
with two additional cores always available.

A physical machine included in the 6-node private cluster
has an AMD Phenom 6-core processor, 16GB memory, and
1 disk. We allocate 5 virtual machines for each physical ma-
chine. Each virtual machine has 2 virtual cores, and 2GB
memory. All of the physical machines are connected with a
network switch, and we ran experiments on both 100Mbps
and 1Gbps switches. The 100Mbps switch represents a con-
strained network bandwidth mimicking a constrained net-
work bandwidth across multiple racks. A prior study use a
similar 100Mbps switch to emulate the rack-to-rack network
bandwidth [17]. With the small cluster size of 6 machines,
the 1Gbps switch provides ample network bandwidth, and



Job Type # jobs # Maps 1Gbps 100Mbps

Grep 20 1 o o
Select 15 2 o o
Grep 10 5 o o
Select 6 10 o o
Grep 6 20 o o

Aggregation 1 50 o o
Select 2 100 o o
Join 2 200 o o

Aggregation 2 300 o -
Grep 2 400 o -

Table 2: Benchmarks on Private Cluster

thus data locality does not cause a significant performance
difference. However, we evaluate our private cluster with
the unrealistically large available network bandwidth too,
in addition to the constrained 100Mbps switch.

We use Xen 4.0.1 to virtualize physical machines, and all
the virtual machines can be reconfigured with the Xen credit
scheduler[7], which supports virtual CPU hot-plugging. We
implemented the features of dynamic resource reconfigura-
tion on Hadoop 0.20.2.

The two environments, the EC2 cluster and private clus-
ter, have different map and reduce slot configurations con-
sidering their core resources. A VM in the Amazon EC2
cluster has 5 map and 3 reduce slots while a VM in the
private cluster has 2 map and 1 reduce slots. The input
block size of both environments is 128MB, which is more
commonly used than 64MB in the Hadoop default configu-
ration. We modified the Hadoop Fair Scheduler [19] for the
synchronous and queue-based DRR implementations.

The workloads we use with the EC2 cluster are described
in the Table 1. Most of the workloads are from the Hive
performance benchmark[5]. Among the workloads, ”Grep”
and ”Select” are I/O intensive workloads, and ”Aggregation”
and ”Join” are communication-intensive workloads. In ad-
dition, ”Inverted Index” has been added as one of highly
communication-intensive workloads [11]. We use a mixture
of these workloads, and generate a random submission dis-
tribution similar to Zaharia et al [19], which is based on the
Facebook trace. Workloads used in the private cluster are
described on the Table 2. They are also from the same set of
the benchmark, but they are scaled down to fit the resource
capabilities of the small cluster.

4.2 Pseudo-ideal DRR Performance
In this section, we first evaluate the potential performance

and locality improvements with DRR, by evaluating a sin-
gle virtual cluster with additional available cores in each
physical system. As additional cores are available in each
system, a reconfiguration request to add a core to a VM is
processed immediately. However, the total number of cores
used by the cluster does not change, to assess the perfor-
mance impact of DRR. To measure this pseudo-ideal DRR
performance, we use both of the EC cluster and our pri-
vate cluster. However, the additionally available cores are
limited, so the performance gain can be slightly lower than
that with the ideal configuration.

We use the synchronous DRR algorithm for the experi-
ments in this section. A non-local VM (source VM) deallo-
cates a core, while a local VM (target VM) allocates a core
to handle an incoming task.

(workload, # maps)
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Figure 5: Locality improvements on the EC2 cluster
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Figure 6: Speedups on the EC2 cluster: normalized

to the default Hadoop

4.2.1 Large-scale Evaluation on the EC2 cluster

As modifying the hypervisor, or running DRR compo-
nents at the privileged level in the EC2 cluster is impossible,
we emulate the impact of DRR in the EC2 cluster. Firstly,
we use a VM instance with eight cores, and initially turned
off two CPUs from the VMs. We use the two additional
cores to emulate VM reconfigurations to add a core or two
to each VM. The total core count for the cluster is fixed to
600, and if an additional core is added to a node, another
node must stop using a core to make the total core count
fixed to 600. By emulating DRR in this way, we evaluate
the performance improvement of the Hadoop cluster using
the fixed total number of virtual cores of 600.

Figure 5 shows the locality improvement with the DRR
emulation in the EC2 cluster over the plain Hadoop cluster.
From the smallest to the biggest job, the data locality of
the plain Hadoop jobs increases, because the input blocks
of large jobs are broadly spread across all the nodes in the
cluster. However, with the DRR emulation, almost all the
tasks are executed at the local VMs with their input data.
The results do not show 100% data locality with the DRR
emulation, since infrequently, two additional cores are not
enough for reconfiguration, making this emulation pseudo-
ideal.

Due to the locality improvement, the Hadoop cluster with
DRR has a significant performance improvement. Figure 6



(workload, # maps)

T
h

e
 a

m
o

u
n

t 
o

f 
ta

s
k
s
 (

%
)

Non-local tasksLocal tasks

Original hadoop

DRR emulation

0

20

40

60

80

100

(G
re

p,
1)

 

(S
el
ec

t,2
)

(G
re

p,
5)

(S
el
ec

t,1
0)

(G
re

p,
20

)

(A
gg

re
,5

0)

(S
el
ec

t,1
00

) 

(J
oi
n,

20
0)

Figure 7: Locality improvements on the 100Mbps
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Figure 8: Speedups of synchronous DRR on the

100Mbps private cluster

shows the speedup of DRR on the EC2 cluster, compared to
the default Hadoop scheduler. The I/O intensive workloads
such as grep or select gain large performance benefits from
DRR, but the inverted index workloads do not exhibit per-
formance improvement since almost the entire run-time is
spent during the reduce phase, which does not benefit from
data locality. It is because this type of jobs needs many re-
duce tasks to compute a large amount of intermediate output
data, whose size is more than three times of the map input
data size. On average, DRR can potentially achieve nearly
15% performance improvement over the plain Hadoop.

The extra overheads for selecting a task and a VM for the
task to implement DRR by the scheduler are negligible. We
measured the scheduling overhead of task scheduling from
DRR at the 100-node EC2 cluster. DRR adds about an
extra 1 millisecond on average for scheduling, compared to
the default Hadoop scheduler.

4.2.2 Evaluation on the Private Cluster

With the private cluster, we evaluate the pseudo-ideal
DRR both with 1Gbps switch and 100Mbps switches. For
these private cluster experiments, we use 2 vCPUs for each
virtual machine initially, and each VM can use additional
cores, if locality requires more cores for a VM. Figure 7
shows the locality difference between the base Hadoop and
DRR on the private cluster. DRR allows the majority of
tasks to run locally, although there are a small portion of
non-local tasks, since additional core resources are limited.

Figure 8 shows the performance improvement with the
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Figure 9: Speedups of synchronous DRR on the

1Gbps private cluster

100Mbps switch. The overall performance improvement is
41% compared to the plain Hadoop on average. Figure 9
presents the performance improvement by DRR with the
1Gbps switch. Since a 1Gbps switch provides very high
bandwidth for 6 systems, the potential performance im-
provements by DRR are much smaller than those with a
100Mbps switch, with about 5% improvement on average.

In this section, we showed the potential performance im-
provements by a pseudo-ideal synchronous DRR, when one
or two additional cores are always available for each VM
for reconfiguration. In the next section, we show a realistic
setup, where virtual clusters use all the available cores with-
out any headroom, to assess the true benefit of the queue-
based DRR.

4.3 Queue-based DRR

In this section, we evaluate the queue-based DRR on the
private cluster configuration, with one or more virtual clus-
ters. We first show the performance improvement by the
queue-based DRR, and evaluate how much delay the queue-
based DRR incurs for the tasks pending in the queue. Since
the quest-based DRR implementation cannot run in the EC2
cluster, we use only the private cluster for the experiments.
In this setup, all the physical cores are assigned to virtual
cores used by virtual clusters, without any free cores avail-
able for reconfiguration. Allocation of a core to a VM can
occur only when there is a pending deallocation request for
a core from the same system.

Figure 10 presents the performance improvement by the
queue-based DRR with a 100Mbps switch. Compared to the
ideal improvement shown in Figure 8, there is some reduc-
tion of performance improvement, since this realistic config-
uration cannot always provide additional cores immediately,
unlike the pseudo-ideal runs. However, the performance im-
provement is still significant with 35% improvement on av-
erage, compared to 41% in the ideal setup.

We evaluate the queue delay of DRR with and without
the queue-aware delay reduction schemes discussed in Sec-
tion 3.3. Figure 11 presents the cumulative distributions of
delays without and with the optimization schemes. On both
cases, about 50% of allocation requests have zero delay, be-
cause there already exists a de-allocation request on the tar-
get MRM. However, when we do not apply the queue-aware
schemes, a large portion of requests exhibit delays longer
than tens of seconds, while the average task execution times
are mostly less than 1 or 2 minutes. This is because alloca-
tion or de-allocation requests are not been widely spread to
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Figure 10: Speedups of queue-based DRR on the

100Mbps private cluster
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Figure 12: Locality improvements with multiple

clusters

virtual machines, and some requests wait for a very long time
at the allocation queue due to the skewed scheduling. How-
ever, the queue-aware schemes discussed in Section 3.3 for
the queue-based DRR reduces the delay significantly, close
to zero delay for more than 95% of reconfiguration requests
as shown in Figure 11.

Multiple Cluster Evaluation: Multiple clusters can
share physical systems and DRRmechanisms, improving the
overall utilization of the systems. To evaluate the impact of
running multiple virtual clusters, we run 1, 2, and 4 clus-
ters composed of 30, 15, and 7 virtual machines respectively.
With the three cluster configurations, we measure the local-
ity improvement by the queue-based DRR. Figure 12 shows
the locality improvements with different numbers of clus-
ters sharing the physical cluster. The figure shows that re-
gardless of the number of clusters, DRR can achieve similar
locality improvements. Figure 13 presents the speedups of
queue-based DRR with the three different numbers of clus-
ters sharing the physical cluster, showing the effectiveness of
DRR even with multiple virtual clusters on the same cloud.
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Figure 13: Speedups with Multiple Clusters

The results indicate that core exchanges by MRM across
different virtual clusters work effectively.

5. RELATED WORK
Improving data locality, while providing fairness among

jobs, has been critical for the performance of distributed
data-intensive platforms. However, the two goals, locality
and fairness, often conflict with each other in distributed
platforms. As shown in Section 3.1, a fair scheduling can
force a task to be scheduled to a remote node without its
data. Quincy addressed such data locality and fairness prob-
lems on distributed data-intensive platforms by scheduling
tasks for fine-grained resource sharing with graph-based work-
flow models [13]. Delay Scheduling proposed locality-aware
scheduling policies to enhance data locality for Hadoop plat-
forms [19]. The scheduler delays assigning a task to a node
for a short period time until a node containing the input
data for the task becomes free. The paper showed that the
delays are relatively short in large scale Hadoop platforms,
with negligible impacts on fairness.

Several prior studies have been improving MapReduce
platforms on virtualized cluster environments. Purlieus im-
proved the locality of map and reduce tasks in MapReduce
platforms on the cloud by locality-aware VM placement [17].
The authors proposed that exploiting prior knowledge about
the characteristics of MapReduce workloads before customers
execute them, the cloud scheduler can place data to the
proper physical machines using the workload information.
Using the data layout, the VM scheduler places VMs to the
physical systems with the corresponding input data. The ap-
proach differs from DRR, as DRR relies on dynamic VM re-
configuration without any prior information about the work-
loads.

Sandholm et al. proposed a dynamic VM reconfiguration
mechanism with resource hot-plugging, to address skewed
resource usages in MapReduce task executions. They as-
sumed that multiple MapReduce clusters share physical re-
sources, and a cluster can use more resources than another
cluster, which may violate SLAs. In addition, resource shar-
ing between virtual clusters should occur only within a sin-
gle physical machine boundary. Kang et al. improved the
performance of virtual MapReduce cluster by modifying the
context-switching mechanism of the Xen credit scheduler for
MapReduce platforms [14]. Zaharia et al. addressed the per-
formance heterogeneity problem of MapReduce platforms on
virtual clusters, where sharing I/O and network resources
among customers cause performance interferences [20]. Us-
ing Amazon Web Service(AWS) such as EC2, S3, SimpleDB,
and SQS, Liu and Orban proposed a new MapReduce com-
putation model based the Hadoop platform [15].

There have been several recent studies to manage vir-
tual resources efficiently in cloud systems [8]. Distributed



Resource Scheduler (DRS) proposed a cloud-scale resource
management system [6]. The scheduler, from a large re-
source pool of physical systems, places VMs to maximize
the utilization, and live-migrates VMs across physical sys-
tems to avoid resource conflicts in a system.

6. CONCLUSIONS

In this paper, we proposed and evaluated a dynamic VM
reconfiguration mechanism for distributed data-intensive plat-
forms on virtualized cloud environments, called Dynamic
Resource Reconfiguration (DRR). DRR improves the input
data locality of a virtual MapReduce cluster, by temporarily
increasing cores to VMs to run local tasks. DRR schedules
tasks based on data locality, and adjust the computational
capability of the virtual nodes to accommodate the sched-
uled tasks. This approach differs from prior approaches as-
suming a cluster which always has a fixed amount of com-
putational resource in each node. Using dynamic VM re-
configuration for distributed data-intensive platforms, can
be extended to different types of load imbalance. Different
resource requirements by different tasks or jobs may cause
each virtual node to under-utilize its resource. With VM re-
configuration, each node can be adjusted to provide only the
necessary amount of resource demanded for the node. Such
a generalized framework with dynamic VM reconfiguration
will be our future work. Such a generalized VM reconfigura-
tion framework can lead to customer-friendly configuration
methods for cloud resources. Each user may not need to fine-
tune the configuration of each virtual machine, as the VM
reconfiguration can adjust the individual VM configuration
dynamically.
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