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Abstract

As processor architectures have been enhancing their computing
capacity by increasing core counts, independent workloads can be
consolidated on a single node for the sake of high resource effi-
ciency in data centers. With the prevalence of virtualization tech-
nology, each individual workload can be hosted on a virtual ma-
chine for strong isolation between co-located workloads. Along
with this trend, hosted applications have increasingly been multi-
threaded to take advantage of improved hardware parallelism. Al-
though the performance of many multithreaded applications highly
depends on communication (or synchronization) latency, existing
schemes of virtual machine scheduling do not explicitly coordinate
virtual CPUs based on their communication behaviors.

This paper presents a demand-based coordinated schedul-
ing scheme for consolidated virtual machines that host multi-
threaded workloads. To this end, we propose communication-
driven scheduling that controls time-sharing in response to inter-
processor interrupts (IPIs) between virtual CPUs. On the basis of
in-depth analysis on the relationship between IPI communications
and coordination demands, we devise IPI-driven coscheduling and
delayed preemption schemes, which effectively reduce synchro-
nization latency and unnecessary CPU consumption. In addition,
we introduce a load-conscious CPU allocation policy in order to
address load imbalance in heterogeneously consolidated environ-
ments. The proposed schemes are evaluated with respect to various
scenarios of mixed workloads using the PARSEC multithreaded ap-
plications. In the evaluation, our scheme improves the overall per-
formance of consolidated workloads, especially communication-
intensive applications, by reducing inefficient synchronization la-
tency.

Categories and Subject Descriptors D.4.1 [OPERATING SYS-
TEMS]: Process Management—Scheduling

General Terms  Algorithms, Experimentation, Performance

Keywords Virtualization, Synchronization, Coscheduling

1. Introduction

Ever-evolving hardware parallelism and virtualization have been
enabler technologies for consolidation of independent workloads
on a single powerful node. With the prevalence of virtualization
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technology, an individual workload can be hosted in an isolated
container, a virtual machine (VM), in which a user can control en-
tire software stack. As processor architectures have been enhancing
their computing capacity by adding more cores, multiple indepen-
dent VMs can be consolidated in a single machine in order to im-
prove resource utilization. In this environment, efficient manage-
ment of shared resources is crucial for the performance of consoli-
dated workloads.

On the software side, many applications have been increasing
thread-level parallelism in order to take advantage of improved
hardware parallelism. Emerging multithreaded workloads such as
RMS (recognition, mining and synthesis) applications [6] are con-
tinuously evolving their algorithms to make the best use of avail-
able cores. The thread-level parallelization, however, typically re-
quires synchronization with respect to the resources shared by mul-
tiple threads. Firstly, all threads in a single process share an ad-
dress space whereby a page table update requires synchronization
of corresponding hardware structures such as translation lookaside
buffer (TLB). Secondly, multiple threads can share a memory re-
gion via shared variables whose updates must be safely serialized
by using synchronization primitives. Such synchronization should
be efficiently handled because it is a dominant factor affecting the
scalability of multithreaded applications.

In the case where a multithreaded workload is hosted on an
SMP VM, the synchronization performance could be degraded by
uncoordinated scheduling of virtual CPUs (vCPUs). Since multi-
ple vCPUs can time-share a physical CPU (pCPU), their execu-
tions are dictated by a hypervisor scheduler. If the scheduler is
oblivious to synchronization demands of vCPUs, it could delay
the execution of a critical vCPU upon which other ones depend
to make progress, thereby aggravating contention for shared re-
sources. Many researchers have addressed this issue by proposing
coordinated scheduling such as relaxed coscheduling [26], balance
scheduling [24], spinlock-aware schemes [13, 17, 25, 28], and hy-
brid coscheduling [27, 30]. The previous schemes, however, did not
explicitly coordinate vCPUs in the event of synchronization-related
communication between vCPUs that host multithreaded workloads.

This paper presents a demand-based coordinated schedul-
ing scheme for consolidated SMP VMs that host multithreaded
workloads. Inspired by traditional demand-based coscheduling for
workstation clusters [3, 4, 9, 22, 23], we introduce communication-
driven scheduling that dynamically coordinates communicating
vCPUs in the event of inter-vCPU synchronization, while man-
aging the other ones in an uncoordinated fashion. Such demand-
based coordination can effectively reduce synchronization latency
without sacrificing the throughput of non-communicating vCPUs.
We take inter-processor interrupt (IPI) into account as inter-vCPU
communication signal, which is virtualized and therefore can be
unobtrusively recognized by the hypervisor. In order to correlate
a certain type of IPI with coordination demand, we investigate
synchronization behaviors that involve IPI communication in ker-



nel and user spaces based on the experimental analysis of various
multithreaded workloads hosted in SMP VMs.

Our findings on the basis of the analysis are summarized as
follows: Firstly, uncoordinated scheduling of vCPUs that synchro-
nize TLB states could incur significant performance degradation
of applications that intensively manipulate their shared address
spaces. Secondly, contention on user-level synchronization prim-
itives can lead to kernel-level spinlock contention, which could re-
sult in lock-holder preemption (LHP) by uncoordinated scheduling.
Thirdly, such LHPs derived from user-level contention are closely
connected with IPI communication for thread wake-up operations.
Finally, IPI communication for thread wake-up can guide the hy-
pervisor to coordination of vCPUs that host coscheduling-friendly
workloads.

Based on the findings, we propose IPI-driven coscheduling and
delayed preemption as communication-driven scheduling schemes.
The IPI-driven coscheduling allows a vCPU that receives an urgent
IPI to be preemptively scheduled in order to reduce synchroniza-
tion latency. The IPI-driven delayed preemption enables a vCPU
that initiates a thread wake-up IPI to urgently request additional
time slice in order to safely release a spinlock, which is likely
held for user-level synchronization, thereby being protected from
LHP. For these IPI-driven scheduling schemes, we devise urgent
vCPU first scheduling, which makes a preemption decision in re-
sponse to an urgent IPI while cooperating with a proportional-share
scheduler for inter-VM fairness. Finally, in conjunction with the
communication-driven scheduling, we introduce load-conscious
balance scheduling that assigns sibling vCPUs, which belong to
the same VM, onto different pCPUs in a best-effort manner while
avoiding negative effect of load imbalance.

Our proposed scheme was implemented based on Linux Com-
pletely Fair Scheduler (CFS) [18] and the Kernel Virtual Machine
(KVM) hypervisor [15]. We evaluated our scheme for various
mixes of multithreaded and sequential workloads. For the evalua-
tion, we chose the PARSEC benchmark suite [6], which includes 13
emerging multithreaded applications with diverse characteristics.
From the results, the demand-based coordinated scheduling im-
proves overall performance compared to the uncoordinated and the
balance scheduling [24], especially for synchronization-intensive
applications. In addition, the load-conscious balance scheduling
improves the performance on imbalanced pCPU loads arising when
parallel and sequential workloads are consolidated.

The remainder of this paper is organized as follows: Section 2
describes related work on previous coordinated scheduling and
contention management schemes for non-virtualized and virtual-
ized environments, and presents our motivation. Section 3 intro-
duces the design and implementation of our proposed scheme based
on experimental analysis. In Section 4, we present our evaluation
results and analysis with various scenarios of consolidation. Fi-
nally, Section 5 discusses alternative approaches complementary to
our scheme and Section 6 concludes our work and presents future
direction.

2. Related Work and Motivation
2.1 Uncoordinated vs. Coordinated Scheduling

Uncoordinated scheduling, also called local scheduling, allows
each per-CPU scheduler to make its own decision on time-sharing
amonyg its assigned threads without any coordination with threads
on other CPUs. This type of scheduling maximizes CPU utilization
while managing local threads with priority-based or proportional
share-based policies. For effective utilization of global CPU re-
sources, a load balancer strives to evenly distribute threads onto
available CPUs. In this manner, the uncoordinated scheduling
achieves high throughput with low overheads due to the inde-

pendent scheduling decisions. Since this scheme can effectively
handle general workloads with simple implementation, it has been
widely employed in most commodity OSes [18, 21] and hypervi-
sors [5, 15].

The uncoordinated scheduling, however, has been known to be
ineffective for communicating workloads such as multithreaded
and parallel applications [20]. The performance of such work-
loads highly depends on communication (or synchronization) la-
tency between cooperative threads. Since uncoordinated schedul-
ing is oblivious to dependency between threads on different CPUs,
it could increase communication latency by preempting a thread on
which cooperative ones depend to make progress. Accordingly, a
communication-sensitive application needs the underlying sched-
uler to coordinate its threads in order to minimize communication
latency. A large volume of research on coordinated scheduling has
been conducted in traditional multiprocessor and cluster environ-
ments [3, 4, 9, 10, 20, 22, 23, 29].

Coscheduling [20] is a representative scheme of coordinated
scheduling that allows cooperative threads to be synchronously
scheduled and descheduled. Such strictly coordinated scheduling
gives an illusion that cooperative threads run on a dedicated ma-
chine without communication latency. Despite its effectiveness in
minimizing communication latency, the strict requirement of syn-
chronous progress can cause CPU fragmentation, since cooperative
threads cannot be scheduled until their required CPUs are all avail-
able. Many researchers have claimed that the CPU fragmentation
problem becomes serious leading to ineffective CPU utilization in
an environment where parallel applications are concurrently hosted
with sequential workloads [3, 4, 9, 16, 22, 23, 29].

An alternative solution to this problem is demand-based (dy-
namic [22, 23] or implicit [3, 4, 9]) coscheduling, which dy-
namically initiates coscheduling only for communicating threads,
whereas non-communicating ones are managed in an uncoordi-
nated fashion. The rationale behind this scheme is that communi-
cation is a tangible signal of coordination demand for most par-
allel workloads. In this regard, it can reduce the communication
latency of cooperative threads on demand, while retaining high
CPU utilization by relaxing strict coscheduling requirement. Many
studies showed that demand-based coscheduling achieves higher
overall performance, compared to uncoordinated scheduling and
strict coscheduling, in network-of-workstation (NOW) environ-
ments where various workloads are generally mixed [2—4, 9].

2.2 Coordination Issues on SMP VMs

Coordinated scheduling is also a compelling issue on SMP VMs as
data centers have increasingly been virtualized today. Since com-
modity OSes have been meant to be running on bare-metal CPUs,
they typically make liberal use of spin-based synchronization prim-
itives (e.g., spinlocks) to protect short critical sections. Once the
OSes are virtualized, however, a spinlock-protected critical section
can be suspended by an underlying hypervisor scheduler. In par-
ticular, preempting a vCPU that holds a contended spinlock (i.e.,
LHP) could increase synchronization latency while forcing con-
tending vCPUs to unnecessarily consume CPU cycles [11, 24, 25].
Accordingly, uncoordinated scheduling can lead to significant scal-
ability bottleneck in consolidating SMP VMs.

In order to address this problem, coordinated scheduling schemes
[7, 13, 17, 24-28, 30] have been proposed for SMP VMs to re-
duce inter-vCPU synchronization latency. As with traditional job
scheduling, most proposals have aimed at loosely coordinated
scheduling to avoid the inefficiency of strict coscheduling. The
VMware ESX server introduced the relaxed coscheduling [26],
which enables sibling vCPUs to make progress at similar rates by
preventing their runtime from being largely skewed. The balance
scheduling [24] is a probabilistic coscheduling scheme, which in-



creases the likelihood of coscheduling sibling vCPUs by assigning
them to different pCPUs. Those two schemes proactively balance
pCPU resources on sibling vCPUs without considering any specific
coordination demand.

Dynamically coordinated scheduling for SMP VMs has been
mainly focused on alleviating excessive busy-waiting on preempted
spinlocks of guest OS kernels. Most schemes selectively manipu-
late scheduling policies for VMs that involve spinlocks based on
explicit (user- or OS-informed) [25, 27, 28, 30] or implicit infor-
mation [7, 25]. Dynamic adaptive scheduling [28] implemented
demand-based coscheduling by regarding OS-informed excessive
wait time on spinlocks as an indicator of coordination demand,
while hybrid schemes [27, 30] selectively coschedule the vCPUs
of a concurrent VM specified by a user. Other than coscheduling,
some approaches dynamically adjust preemption policy [25] and
the length of time slice [7] in order to minimize the synchroniza-
tion latency on spinlocks. Uhlig et al. [25] proposed delayed pre-
emption that defers involuntary context switching of a lock-holder
vCPU to minimize synchronization latency. In order to identify a
lock-holder vCPU, they proposed an OS-informed approach and an
inference technique based on the fact that a spinlock is held only in
the kernel mode.

Alternative approaches are helping locks [11] and hardware-
assisted contention management [1, 12]. Both approaches have the
same purpose that avoids busy-waiting on a likely preempted spin-
lock. The helping lock approach replaces OS spinlocks with spin-
then-block based ones, which allow a vCPU that spins on a lock
over a threshold period to sleep until the lock is eventually avail-
able [11]. The hardware-assisted scheme enables a pCPU to de-
tect excessive spinning by monitoring PAUSE instruction, which is
used within a busy-wait loop; Intel and AMD provide Pause Loop
Exiting (PLE) [12] and Pause Filter [1], respectively. Once exces-
sive pause-loop is detected based on spin threshold empirically set,
a pCPU raises an exception, which causes the transition into the
hypervisor (i.e., VMEXIT), so that the hypervisor can handle the
contention. On this exception, the hypervisor scheduler allows a
corresponding vCPU to yield its pCPU to another one. Although
the helping locks and the hardware-assisted scheme effectively re-
duce the amount of unnecessary busy-waiting, they are reactive
approaches triggered once contention occurs after spinning, albeit
short.

2.3 Motivation

As with traditional NOW environments [2], virtualized data centers
can embrace diverse workloads including parallel, sequential, and
interactive applications. With the emergence of Infrastructure-as-
a-Service (IaaS) clouds and virtual desktop infrastructure (VDI),
such heterogeneity becomes more general. In addition, as modern
architectures have been increasing their computing capacity, high
consolidation density of SMP VMs can be realized. In order to
efficiently support dynamic and diverse thread-level parallelism of
consolidated applications, a hypervisor scheduler should carefully
coordinate VCPUs based on their workload characteristics.

Considering heterogeneity of consolidated workloads, demand-
based coordinated scheduling is an effective approach for SMP
VMs to achieve high overall performance of communicating and
non-communicating workloads. Although coordination demand
can take place for various purposes in user and kernel layers in
a VM, prior work on demand-based coscheduling [28] coordinates
vCPUs based only on kernel-level spinlock synchronization by
means of an OS-assisted technique. Inspired by traditional demand-
based coscheduling in NOW environments [3, 23], we investigate
that inter-vCPU communication can be a useful signal for coor-
dination demands from the broad viewpoint of kernel-level and
user-level synchronization.
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Figure 1. The number of IPIs per second per vCPU of the PAR-
SEC applications: In the case of Linux, TLB shootdown and
reschedule IPIs are dominantly used, whereas the other types of
IPIs such as function-call IPIs are rarely generated.

3. Demand-Based Coordinated Scheduling

This section presents the design and implementation of the pro-
posed demand-based coordinated scheduling. Fundamentally, our
scheme aims at non-intrusive design without collaboration of spe-
cific guest-side software (e.g., kernel, user-level applications, and
libraries). In addition, our communication-driven coordination ma-
nipulates only time-sharing decisions while vCPU-to-pCPU as-
signment is carried out independently. We present the experimen-
tal analysis and implementation for our communication-driven
scheduling and the load-conscious balance scheduling for adap-
tive vCPU-to-pCPU assignment in the following subsections.

3.1 Communication-Driven Scheduling

As mentioned, our hypothesis is that inter-vCPU communication
can be used as an indicator of coordination demand. For non-
intrusive design, we take IPIs into account as inter-vCPU commu-
nication signals, which can be unobtrusively observed by the hy-
pervisor. In order to investigate the implications of IPIs for consoli-
dated multithreaded workloads, we conducted experimental analy-
sis with the PARSEC 2.1 benchmark suite [6], which is comprised
of various types of emerging multithreaded applications. Using na-
tive input, each application ran with eight threads in an 8-vCPU
VM, which is consolidated on two quad core processors; the de-
tailed environment is explained in Section 4. Figure 1 shows IPI
rates (the number of IPIs per second per vCPU) observed by the
KVM hypervisor while each PARSEC application is solely running
inside a VM. As shown in the figure, the applications have diverse
characteristics in terms of the rates and types of IPIs. The follow-
ing subsections explain the role of each IPI type and addresses how
those low-level signals are related to the demands of kernel- and
user-level coordination.

3.1.1 Kernel-Level Coordination Demands

We investigate kernel-level coordination demands and how they are
correlated with inter-vCPU communication. In order to identify
kernel-level coordination demands, we examine how much the
ratio of CPU time spent in the kernel is affected by contention
between VMs under uncoordinated scheduling. If the kernel time
ratio is largely amplified compared to that without contention, we
can figure out that kernel-level contention is not properly resolved
by uncoordinated scheduling. We used the Linux CFS scheduler
as an uncoordinated scheduler and streamcluster, which consumes
considerable CPU with heavy communication, as a contending
workload. To measure the amplification, we compare the two cases:
solorun (without contention) and corun (with contention).

Figure 2 shows that the ratio of CPU time consumed in kernel
and user spaces for each application. As shown in the figure, the ra-
tio of kernel-level CPU time in the corun case is largely amplified
by up to 30x compared to the solorun. Interestingly, such amplifi-
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Figure 2. The amplification of kernel time ratio for PARSEC ap-
plications in the case of corun with streamcluster.

Function
Application TLB shootdown Lock spinning
% for total % for kernel % for total % for kernel
CPU usage CPU usage CPU usage CPU usage
bodytrack 1.96 24.75 4.56 57.58
canneal 0.02 0.42 4.02 85.17
dedup 42.55 51.44 35.82 43.30
facesim 0.02 0.35 4.33 75.57
ferret 8.5 75.9 1.97 17.81
fluidanimate 0.02 0.60 3.11 92.56
streamcluster 0.02 0.18 10.35 91.11
swaptions 0.81 13.11 5.24 84.79
vips 41.35 87.74 4.32 9.17
X264 0.08 1.03 6.98 89.72

Table 1. The function-level profiling of CPU usage with respect
to the applications whose kernel time ratio is largely amplified in
the case of corun with streamcluster: The kernel CPU cycles are
dominantly consumed for TLB shootdown and lock spinning (bold
numbers represent significant amplification for each function).

cation takes place even in the applications that spend most of their
time in user space in the case of solorun. In addition, the applica-
tions that show largely amplified kernel time are communication-
intensive workloads: all applications except blackscholes, freqmine,
and raytrace (refer to their IPI rates in Figure 1). This result im-
plies that kernel-level coordination is required for communication-
intensive applications even though they are not inherently kernel-
intensive. In order to identify the cause of the amplification, we
conducted function-level profiling of CPU cycles consumed in the
guest kernel by using perf. As shown in Table 1, amplified ker-
nel CPU time is mostly spent on two synchronization functions: 1)
TLB shootdown and 2) lock spinning.

TLB shootdown is a kernel-level operation for TLB synchro-
nization via inter-CPU (inter-vCPU) communication. In native sys-
tems, the kernel ensures that a TLB entry invalidated on one CPU
is synchronized with the corresponding entries on the other CPUs
for the coherent view of a shared address space. To this end, com-
modity OSes such as Linux and Windows use an IPI to notify a
remote CPU of TLB invalidation. A CPU that initiates TLB shoot-
down starts busy-waiting until its all recipient CPUs acknowledge
IPIs for the sake of TLB consistency. The busy-waiting is efficient
in native systems due to the low latency of hardware-based IPIs and
high-priority IPI handlers.

Once virtualized, however, a busy-waiting vCPU could con-
sume excessive CPU cycles if one of the recipient vCPUs is not
immediately scheduled. This problem becomes serious, as multi-
threaded applications typically multicast (or broadcast) TLB shoot-
down IPIs to the vCPUs associated with a shared address space.
Note that the applications that show large amplification of TLB
shootdown time involve a considerable traffic of TLB shootdown
IPIs; dedup, ferret, and vips pressure their shared address spaces
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Figure 3. The breakdown of spinlock wait time for the applica-
tions where lock spinning time is largely amplified in the case of
corun with streamcluster.

with intensive TLB shootdown operations at the rate of 1761, 443,
and 1350 IPIs/sec/vCPU, respectively. Therefore, a TLB shoot-
down IPI is regarded as a performance-critical signal of inter-vCPU
communication that needs to be urgently handled for reducing un-
necessary busy-waiting.

Next, the excessive lock spinning, which is another source
of kernel time amplification, has been well known as inefficient
kernel-level synchronization arising from uncoordinated schedul-
ing. This phenomenon typically stems from the LHP problem
where a vCPU that is holding a spinlock is involuntarily desched-
uled before releasing it. Unlike TLB shootdown, unfortunately,
spinlock-based synchronization itself does not entail an explicit
signal of inter-vCPU communication. It is important to note, how-
ever, that excessive lock spinning happens in the workloads with a
large traffic of inter-vCPU communication, especially reschedule
IPIs (see Figure 1). A reschedule IPI is used to notify a remote
CPU of the availability of a thread newly awakened by a local
CPU. Based on this observation, we analyze which type of locks
lead to pathological spinning and why this situation likely occurs
in reschedule-IPI-intensive applications.

In order to pinpoint where excessive lock spinning occurs, we
used lockstat ', which reports holding and waiting time statistics for
kernel synchronization primitives. Figure 3 shows the ratio of spin-
lock wait times for the applications that show considerable amplifi-
cation of lock spinning time. As shown in the result, a futex-queue
spinlock mostly results in problematic waiting time; the average
wait time of the futex-queue spinlock is 192-13687us, which is
abnormal considering that spinlock-protected critical sections gen-
erally last for a few microseconds [25]. The futex is the kernel-
level support to provide user-level applications with synchroniza-
tion primitives such as mutex, conditional variable, and barrier. A
futex-queue spinlock is used to protect a wait queue associated with
a user-level synchronization object. Accordingly, synchronization-
intensive applications lead to contention on the futex-queue lock by
requesting aggressive queueing operations.

We take a closer look at the futex-queue lock contention from
the perspective of inter-vCPU communication. Figure 4 depicts a
typical procedure of how a user-level application interacts with
the kernel-level futex support for synchronization. Once a thread
exits a critical section, it releases a mutex and notifies, if any, a
waiting thread that the lock is available through a futex system
call. Then the kernel locates the futex queue associated with the
mutex and tries to acquire the queue’s spinlock (i.e., futex-queue

'The current lockstat in the Linux kernel replaces the default spinlock,
ticket spinlock, with the old unfair lock by the lock debugging feature. We
modified the lock debugging feature to use the ticket spinlock for consistent
analysis.
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futex_wait(mutex) {
mutex unlock : queue = find_queue(mutex)
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spin_unlock(queue->lock)
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futex_wake(mutex) {

queue = find_queue(mutex)
spin_lock(queue->lock) :

thread = dequeue(queue)
wake_up(thread) { : }

if (thread->cpu != this_cpu) :
scndircschcdulcilPI(thrcad->cpu)-rl7" critical section */
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spin_unlock(queue->lock) futex_wake(mutex) w critical section */
v) : ;' mutex_unlock

Figure 4. The interaction between user-level synchronization and
the kernel support (futex): a gray region represents kernel context
and a lightening mark is a reschedule IPI sent from left to right.

lock) to safely dequeue and wake up a thread waiting on the queue.
If the thread is decided to be scheduled on a remote CPU by the
scheduler, a reschedule IPI is triggered in order to inform the CPU
of the newly runnable thread. Note here that the reschedule IPI is
sent with the futex-queue lock held. At this point, futex-queue LHP
can happen if the waking vCPU is preempted right after sending
a reschedule IPI before releasing the lock by either its recipient or
another one.

From the analysis, a reschedule IPI can give the hypervisor
scheduler a hint that its initiating vCPU likely holds a spinlock.
Although the explained procedure is related to a futex-queue lock,
our finding is generalized to the relationship between a wait-queue
lock and reschedule IPI. Most OSes provide wait-queue APIs for
thread-level communication and synchronization [18, 21]. In the
Linux kernel, for example, general wake-up functions, prefixed
with __wake_up, traverse a wait-queue and wake up one or more
threads blocked in the queue with its corresponding lock held. In
addition, block-based synchronization primitives in the kernel such
as mutex and semaphore maintain their own wait-queues and wake
up a waiting thread while holding a spinlock. Note that dedup and
vips, which put significant pressure on their shared address spaces,
suffer from excessive spinning on the wait-queue lock (sem-wait
lock) of mm’s semaphore, which is used to protect a shared address
space.

Given this hint, the hypervisor can delay the preemption of a
vCPU that initiates a reschedule IPI when another vCPU makes a
preemption attempt. The amount of delay should be appropriately
chosen to allow a vCPU to safely release a likely held spinlock.
Since a spinlock-protected critical section is generally short [11,
25], the delay can be empirically determined. However, a critical
section that entails IPI transmission, which causes VMEXIT, could
be prolonged by hypervisor intervention. To figure out a suitable
delay, we conducted sensitivity analysis in Section 4.1.1. Although
a sufficiently large value helps avoid LHP, it may prolong the
execution of other urgent vCPUs, for example a recipient of a
TLB shootdown IPI. A previous delayed preemption scheme that
is triggered wherever in kernel space [25] has a larger time window
of preemption delay, which may degrade the performance of other
urgent vCPUs.

Finally, a wait-queue lock can also be held in a wait procedure
other than wake-up operations. As shown in Figure 4, however, a
critical section in the wait procedure (futex_wait) is extremely short
without being interposed by any VMEXIT. Hence, we suppose
that wait-queue LHP is unlikely to happen in a wait procedure.
With our kernel instrumentation that informs the hypervisor of
lock-holding locations, described in Section 4.1.1, we notice that
negligible LHPs (near zero) occur in the futex wait function while
each PARSEC application is running with streamcluster; almost all
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Figure 5. A synchronization behavior of streamcluster identified
as reschedule IPI transmissions (vertical arrows) for about 80ms.

LHPs happen in futex_wake and futex_requeue, both of which entail
reschedule IPI transmission within a critical section.

3.1.2 User-Level Coordination Demands

Traditional demand-based coscheduling in workstation clusters [3,
4,9, 22, 23] had dealt with the coordination for user-level appli-
cations in which multiple threads heavily communicate with each
other. When a thread sends its counterpart a message in order to
synchronize a part of parallel computation, the kernel scheduler
boosts the priority of the recipient thread so that the communicat-
ing threads are coscheduled. The implicit coscheduling [3, 4, 9]
takes advantage of an underlying priority-based scheduler, which
typically raises the priority of a blocked thread when waking it up.
Such demand-based coscheduling was implemented in messaging
libraries and firmware of network interface cards for special types
of parallel workloads such as bulk synchronous parallel programs.

In virtualized environments, the hypervisor cannot be aware of
the actual semantic of user-level communication without the sup-
port of threading or messaging libraries. From the viewpoint of the
hypervisor, instead, user-level communication could accompany a
reschedule IPI if a blocked thread is woken up immediately by
a communication message. Since user-level synchronization typi-
cally employs block or spin-then-block based primitives, commu-
nication between threads can be recognized as reschedule IPIs by
the hypervisor. Hence, the hypervisor scheduler can make use of
reschedule IPIs to coordinate user-level communication.

Figure 5 depicts a trace of reschedule IPIs obtained by the hy-
pervisor while streamcluster is running inside an 8-vCPU VM. The
streamcluster application makes heavy use of barrier-based syn-
chronization where each thread locally computes its job until a
synchronization point, at which all the threads wait for the next
stage. This type of application shows no communication during
local computation, but involves bulk synchronization at a barrier.
As shown in the figure, this behavior is captured via reschedule
IPI communication; two to four barrier synchronizations occur at a
time within 1ms in a fine-grained manner. If vCPUs are cosched-
uled in response to reschedule IPIs, all the threads can initiate their
computations simultaneously on the coscheduled vCPUs.

The performance impact of coscheduling driven by a resched-
ule IPI depends on how a hosted application manages contention
for its parallel computation. Firstly, a parallel application could in-
volve less efficient synchronization when its hosting vCPUs are not
coscheduled. For example, in the event of contention, a spin-then-
block synchronization primitive allows a thread to busy-wait for
a short period of time until blocked. If the contention is resolved
during the spinning, it can avoid a blocking operation, which is
expensive due to OS and hypervisor involvements. When such an
application runs on coscheduled vCPUs, contention is likely re-
solved in spin phase without expensive blocking operations. Sec-
ondly, depending on algorithms to coordinate parallel computa-
tion, additional synchronizations can be induced when threads run
on uncoordinated vCPUs. If a scheduler delays the execution of
a vCPU that hosts a thread on which other ones depend to make
progress, more threads can be blocked with additional contention.



Coscheduling reduces such execution delay so that the number of
unnecessary contentions can be effectively curtailed.

The reschedule-IPI-driven coscheduling, however, may not af-
fect the performance of the workloads whose contention manage-
ment is insensitive to coscheduling. Since a reschedule IPI is gen-
erally used for thread scheduling while not confined to the use of
synchronization, coscheduling driven by every reschedule IPI can-
not improve the performance involving context switch overheads
unless a hosted workload is coscheduling-friendly. For efficiency,
reschedule-IPI-driven coscheduling can be selectively applied to
the VMs that run coscheduling-friendly workloads, while the other
scheduling schemes that resolve kernel-level contention are glob-
ally enabled. To this end, we enable the hypervisor to expose a
knob to selectively enable each feature of the IPI-driven schedul-
ing a per-VM basis. In this work, we use a priori information about
coscheduling-friendly characteristics such as spin-then-block syn-
chronization and leave hypervisor-level estimation as future work;
the feasibility of hypervisor-level estimation is discussed in Sec-
tion 4.2.

3.1.3 Urgent vCPU First Scheduling

Our analysis shows that IPIs are the communication signals that en-
able a hypervisor scheduler to coordinate communicating vCPUs
for reducing unnecessary contention. Firstly, when a TLB shoot-
down IPI is initiated, its recipient vCPU can be urgently sched-
uled to reduce the amount of busy-waiting of a sender vCPU. Sec-
ondly, when a reschedule IPI is initiated, its sender vCPU, which
is currently running, can be protected from preemption by another
vCPU to reduce the amount of lock spinning due to wait-queue
LHP. In addition, its recipient vCPU can be coscheduled to alle-
viate inefficient or unnecessary user-level contention. In order to
handle these coordination demands, we introduce urgent vCPU first
(UVF) scheduling, which performs preemptive scheduling and de-
layed preemption in response to corresponding IPI signals, called
urgent IPIs.

The UVF scheduling does not replace but complements the
proportional-share scheduler in order for its scheduling decision
to comply with inter-VM fairness. To this end, per-pCPU FIFO
queue, named urgent queue, is added over the primary runqueue of
the proportional-share scheduler. When a vCPU requests to enter
urgent state in response to an IPI, it is inserted into an urgent queue
while being included in the primary runqueue; a currently running
vCPU can also request to enter urgent state. When a scheduler
picks a next vCPU, before inspecting the primary runqueue, it
firstly checks whether a vCPU is waiting on the urgent queue and
is eligible to run immediately without violating inter-VM fairness
by consulting the proportional-share scheduler. If so, the urgent
vCPU is preemptively scheduled so that its urgent operation can
be promptly handled. Otherwise, a next vCPU is selected from the
primary runqueue by the proportional-share scheduler.

In response to an urgent IPI, a corresponding vCPU can request
to enter urgent state in two ways: 1) event-based and 2) time-
based requests. Firstly, the event-based request is used for a vCPU
to be retained in urgent state until pending urgent events are all
acknowledged. A TLB shootdown IPI uses the event-based request
to keep its recipient vCPU in urgent state until acknowledged in the
event of end-of-interrupt (EOI) for its corresponding vector; an EOI
signal is triggered right after a requested TLB entry is invalidated.
Secondly, the time-based request allows an IPI to specify a time
during which a corresponding vCPU can run in urgent state. A
reschedule IPI uses the time-based request to preserve its sender
vCPU in urgent state until its requested time is taken to release a
wait-queue lock. In addition, a recipient vCPU of a reschedule IPI
can also be urgently scheduled during a requested time for user-
level coordination by means of the time-based request.

The UVF scheduling employs its own time slice, named urgent
tslice, for urgent vCPUs to expedite pending requests. Since mul-
tiple VMs can involve urgent IPIs concurrently, the urgent tslice
should be a short time period to improve overall responsiveness.
The vCPUs waiting on an urgent queue are served in a round-robin
manner with the urgent tslice, during which an urgently running
vCPU is protected by preemption. If an urgent vCPU cannot han-
dle all requests during the time slice, it is requeued at the tail of
an urgent queue retaining urgent state. Although extremely short
urgent tslice improves overall turnaround time, it needs to be long
enough for an urgent vCPU to handle at least one urgent request
for useful work in the time slice. For example, the urgent tslice can
be preferably set greater than or equal to the preemption delay re-
quested by a reschedule IPI sender.

The UVF scheduling introduces an additional knob, called ur-
gent allowance, for a vCPU to borrow an urgent tslice from its fu-
ture CPU allocation by trading short-term fairness for overall ef-
ficiency. This mechanism is similar to the Borrowed-Virtual-Time
scheduling [8] and Partial Boosting [14] in that a latency-sensitive
vCPU (i.e., urgent vCPU) is given dispatch preference while not
disrupting long-term CPU fairness. For example in the CFS sched-
uler, vCPU execution time is monitored in virtual runtime, which
proceeds at a rate inversely proportional to a given share. If the
virtual runtime of a vCPU is larger than that of the currently run-
ning one, it cannot be preemptively scheduled while waiting until
its virtual runtime becomes minimum in the runqueue [18]. This
strict short-term fairness inhibits efficiency by increasing unneces-
sary busy-waiting due to the prolonged scheduling latency of urgent
vCPUs. In order to address this issue, an urgent vCPU is allowed
to preemptively run by borrowing the urgent tslice from its future
CPU time, only if its time is greater than that of the currently run-
ning one within a urgent allowance. In the case of CFS, the urgent
allowance is represented in the form of virtual time; in the Xen
Credit scheduler, it can be specified as credit. With a short urgent
tslice under one millisecond, the urgent allowance can improve ef-
ficiency with a little time lag.

3.2 Load-Conscious Balance Scheduling

In our scheme, vCPU-to-pCPU assignment is separately carried
out being decoupled from the communication-driven scheduling.
This subsection describes how load imbalance typically happens in
heterogeneous workloads and presents our load-conscious balance
scheduling scheme for adaptive vCPU-to-pCPU assignment.

3.2.1 Load Imbalance in Consolidated Workloads

In uncoordinated or loosely coordinated scheduling, a load bal-
ancer distributes the loads imposed by runnable vCPUs onto avail-
able pCPUs as evenly as possible. The load balancing minimizes
idle CPU fragmentation so that high CPU throughput and respon-
siveness can be achieved. Since frequent vCPU migration leads to
inefficient use of warm hardware state such as CPU caches, most
schemes adopt lazy algorithms to balance global loads. Firstly, once
a pCPU goes idle, it tries to steal a waiting vCPU from a busier
pCPU like a work-stealing mechanism. In the case where all pCPUs
are busy, secondly, waiting vCPUs are periodically migrated onto
less loaded pCPUs. Since the load balancing operations are loosely
triggered, pCPU loads could be temporarily imbalanced between
the invocations of the load balancer.

In addition to the transient load imbalance, pCPU loads can
be biased in a situation where VMs are consolidated with differ-
ent or dynamic loads on their vCPUs. Independent VM instances
can have different numbers of vCPUs while holding fair shares.
Given the equal shares, a VCPU of a single-core VM has twice
shares (i.e., load) than that of a dual-core VM. Although all VMs
have the same number of vCPUs with fair shares, each vCPU
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Figure 6. The vCPU-to-pCPU assignment of the balance and LC
balance scheduling on four pCPUs whose loads are imbalanced by
one 4-vCPU VM and two 1-vCPU VMs: All VMs are given fair
shares and the size of each vCPU represents the amount of shares.
The vCPU of 1-vCPU VM has shares four times more than that of
4-vCPU VM.

could be given different shares depending on the number of active
vCPUs. Proportional-share schedulers for SMP VMs (e.g., CFS
group scheduler and Xen Credit scheduler) monitor recent idleness
of existing vCPUs in order to distribute a VM’s shares only to its
active vCPUs. For example, if shares, S, are given to a 4-vCPU VM
that runs only a sequential workload on a vCPU while idling the
others, the active vCPU is allotted whole amount of the shares, S.
Once the workload enters a parallel phase busying all vCPUs, S/4 is
evenly distributed to each vCPU. This adaptive allocation reduces
ineffective shares wasted by inactive vCPUs, but can increase the
extent of load imbalance by different amounts of vCPU shares.

3.2.2 Load-Conscious Balance Scheduling

A simple and effective algorithm of vCPU-to-pCPU assignment is
the balance scheduling [24], which assigns sibling vCPUs onto dif-
ferent pCPUs in order to prevent them from time-sharing (contend-
ing for) a pCPU; the time-sharing of sibling vCPUs is so-called
vCPU stacking in [24]. Avoiding vCPU stacking can increase the
likelihood of coscheduling sibling vCPUs, compared to uncoordi-
nated scheduling, so that negative effect on synchronization latency
can be relieved. To this end, this scheme restricts the pCPU affin-
ity of an awakened vCPU to the set of pCPUs to which no sibling
vCPU is assigned, while letting the underlying scheduler choose an
appropriate pCPU (e.g., least-loaded pCPU) in the specified affin-
ity.

The balance scheduling, however, could degrade synchroniza-
tion latency if pCPU loads are imbalanced at the moment of as-
signment. In this case, since the algorithm does not allow vCPU
stacking without considering global loads, a vCPU can be assigned
to an overloaded pCPU when underloaded ones are all occupied by
its sibling vCPUs. Figure 6(a) shows the situation in which the four
vCPUs of VM1 are assigned to different pCPUs while loads are
imbalanced by the vCPUs with larger shares of two 1-vCPU VMs;
all VMs are given fair shares and the size of each vCPU represents
the amount of shares. As shown in the figure, although pCPU2 and
pCPU3 are sufficiently underloaded, vCPUO and vCPU1 of VM1
are confined to the overloaded pCPUs (pCPUO and pCPU1) in or-
der to avoid vCPU stacking. As a result, synchronization latency
can be prolonged due to high scheduling latency on the overloaded
pCPUs. Moreover, the balance scheduling of VM1 can hurt the per-
formance of 1-vCPU VMs (VM2 and VM3) by contending for the
overloaded pCPUs; in this example, each 1-vCPU VM is entitled
to monopolize a pCPU without interference for inter-VM fairness.

We propose load-conscious (LC) balance scheduling, which is
an adaptive assignment policy based on the balance scheduling and

load balancing. In order to avoid ineffective assignment on imbal-
anced pCPU loads, this scheme selectively allows vCPU stacking
in the case where the balance scheduling can aggravate load im-
balance. When a vCPU is woken up, the algorithm obtains a set of
candidate pCPUs to which no sibling vCPUs are assigned. Then, it
decides whether each candidate pCPU is overloaded by checking if
the load of each pCPU is higher than the average load of all pCPUs.
If at least one underloaded pCPU exists in the set, the set is deter-
mined as the pCPU affinity of the vCPU as the balance scheduling
does. Otherwise (i.e., all the candidates are overloaded), the affinity
is set to all pCPUs without any restriction so that the vCPU can be
assigned to an underloaded pCPU. Finally, vCPU stacking is also
allowed when the load balancer tries to migrate the vCPU to an
underloaded pCPU to which its sibling vCPU has been assigned.
Figure 6(b) shows the assignment by the LC balance scheduling
where vCPU stacking is allowed on skewed loads.

Although the LC balance scheduling allows vCPU stacking only
on underloaded pCPUs, synchronization latency can be adversely
affected by contention between sibling vCPUs that communicate
with each other. For example, when a vCPU receives a reschedule
IPI and is woken up on the pCPU where its sender vCPU is running,
wake-queue LHP can happen if the woken vCPU immediately
preempts the sender. Therefore, in conjunction with the LC balance
scheduling, our communication-driven scheduling is essential to
alleviate such negative effect of vCPU stacking by coordinating
communicating vCPUs as described in Section 3.1.3; this impact
is evaluated in Section 4.1.2.

4. Evaluation

We implemented our proposed scheme based on the Linux CFS
scheduler and the KVM hypervisor [15] in the Linux kernel 3.2.0.
For proportional sharing for VMs, we used the CFS group schedul-
ing, which proportionally distributes given shares to each VM. All
per-VM threads including vCPUs are grouped together via cgroup
interface [19]. For fair sharing of pCPUs, equal shares are given
to each VM (group); the shares were set to default shares (1024)
multiplied by the number of pCPUs. The prototype was installed
on Dell PowerEdge R610, equipped with two quad-core Intel Xeon
X5550 2.67GHz processors and 24GB RAM; eight physical cores
are available with hyperthreading disabled. We used Ubuntu 11.04
Linux with the kernel version 3.2.0 as a guest OS.

In order to show the impact of each proposed scheme, we
conducted experiments for the following UVF scheduling policies:

® Resched-DP: In response to a reschedule IPI, its initiating
vCPU enters urgent state for delayed preemption using a time-
based request.

e TLB-Co: In response to a TLB shootdown IPI, its recipient
vCPU enters urgent state for coscheduling using an event-based
request.

e Resched-Co: In response to a reschedule IPI, its recipient
vCPU enters urgent state for coscheduling using a time-based
request.

As mentioned, the first two schemes coordinate kernel-level con-
tention, while the last one is for the coordination of user-level con-
tention. For vCPU-to-pCPU assignment, the LC balance schedul-
ing (LC Balance) was used with the UVF scheduling schemes. We
used the default CFS scheduler (denoted as Baseline) as an unco-
ordinated scheduler. In addition, the balance scheduling (denoted as
Balance), which implements probabilistic coscheduling, was also
compared with our schemes. We ran each mixed workload repeat-
edly (at least three times) in order to fully overlap their executions.
We disabled the dynamic tick feature in the host kernel (i.e., hyper-
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Figure 7. Parameter sensitivity of the UVF scheduling

visor), since this energy-related feature affects the performance of
several applications in the case of solorun.

4.1 Coordination for Kernel-Level Contention
4.1.1 Parameter Sensitivity

As described in Section 3.1.3, the UVF scheduling uses three pa-
rameters: 1) preemption delay, 2) urgent tslice, and 3) urgent al-
lowance. Firstly, preemption delay specifies a time during which
a vCPU that initiates a reschedule IPI is allowed to release a wait-
queue lock before being preempted. Secondly, urgent tslice decides
the turnaround time of multiple urgent vCPUs waiting on a pCPU.
Finally, urgent allowance determines how much short-term fairness
is traded for overall efficiency by allowing an urgent vCPU to bor-
row its future time slice. This subsection presents sensitivity anal-
ysis on these parameters; for every analysis, an 8-vCPU VM with
4GB memory was used to host a parallel application and the LC
balance scheduling was used for vCPU-to-pCPU assignment.

Firstly, with respect to the preemption delay, we chose three
communication-intensive applications (streamcluster, facesim, and
bodytrack) in which futex-queue locks are dominantly contended
with considerable reschedule IPIs. The dedup application was used
as a corunning workload to generate intensive preemptions, since
it induces significant thread wake-ups by fine-grained communica-
tion. Resched-DP was applied only to a main workload while a
corunning one is not affected by delay parameters for consistent
interference; all UVF features but Resched-DP are disabled. We
measured the number of LHPs by enabling the hypervisor to iden-
tify which spinlock is held at the time when a vCPU is preempted.
To this end, we instrumented the Linux spinlock functions to record
an instruction pointer where a spinlock is acquired in a per-vCPU
variable shared with the hypervisor; the variable maintains multiple
instruction pointers for nested lock acquisitions.

Figure 7(a) shows the number of futex-queue LHPs averaged
on five runs as the amount of preemption delay increases. As
shown in the figure, the number of LHPs is significantly reduced
by Resched-DP (up to 75%). With the delay parameters larger
than 300us, the numbers of LHPs become stable without further
noticeable reduction. One thing to note is that there still remain
LHPs even though the delay is increased up to 1ms. In order to
find the source of the remaining LHPs, we also obtained an instruc-
tion pointer at the time of preemption. From the analysis, many
remaining LHPs happened during the preparation for reschedule
IPI transmission. Such preparation involves multiple APIC (Ad-
vanced Programmable Interrupt Controller) accesses, which cause
transitions to the hypervisor via VMEXIT. By multiple hypervisor
interventions during the preparation, a critical section that includes
IPI transmission is prolonged and thus likely to be suspended by
preemption before firing an IPI. To verify this, we applied early

delayed preemption, which is triggered on the first access to the
APIC register for IPI transmission (i.e., ICR read in x86 APIC). As
shown in the figure, the early delayed preemption further reduces
the remaining LHPs.

Secondly, we analyzed the impact of urgent tslice by using a
TLB-shootdown-intensive application, vips, since TLB shootdown
latency is sensitive to urgent tslice when multiple recipient vCPUs
concurrently request urgent scheduling on a pCPU. In order for
multiple vCPUs to contend in an urgent queue, we ran three vips
VMs with TLB-Co and Resched-DP (with 500us preemption de-
lay) enabled. Figure 7(b) shows the execution time and CPU cy-
cles averaged on ten runs as urgent tslice is increased. As expected,
a larger time slice increases the scheduling latency of TLB-IPI-
recipient vCPUs leading to a larger amount of CPU cycles con-
sumed for TLB shootdown. Although a short time slice, 100us, re-
sults in the lowest consumption of CPU cycles for TLB shootdown,
the performance is less than that for 500us due to the overheads
caused by frequent context switches.

Finally, we investigated the effectiveness of urgent allowance
considering the dependency on the proportional-share scheduler. In
the CFS scheduler, urgent allowance is represented as virtual time.
It allows a vCPU whose virtual runtime is greater than that of the
currently running one within an urgent allowance to preemptively
run during an urgent tslice, which is borrowed from its future
CPU time. For evaluation, we chose vips and facesim as main and
corunning workloads, respectively. The reason we select facesim
as a corunner is that it can impede the urgent scheduling of the
vips VM by repeated sleep and wake-up of its worker threads. We
coran two facesim VMs with TLB-Co and Resched-DP enabled;
preemption delay and urgent tslice were set to S00us.

Figure 7(c) shows the slowdown relative to solorun of both
workloads and the CPU cycles of the vips VM. As shown in the
result, larger urgent allowance improves the performance of vips
while not sacrificing that of facesim. The CFS scheduler places
an awakened vCPU before the minimum virtual runtime by a half
of sched_latency, which is 24ms in our default configuration. Ac-
cordingly, the awakened vCPUs of the facesim VMs are frequently
placed 12ms before those of the vips VM. Considering this policy,
an urgent allowance value larger than 12ms helps an urgent vCPU
effectively borrow future time slice to preemptively handle urgent
IPIs.

On the basis of the analysis, we chose 500us as preemption de-
lay and urgent tslice, and 18ms as urgent allowance in the remain-
ing evaluations. In addition, we did not apply the early delayed pre-
emption to Resched-DP. Since the type of an IPI to be sent cannot
be identified at the first ICR read access, early delayed preemption
is performed at every type of IPI transmission. In order to evaluate
the impact of delayed preemption specifically for reschedule IPI
transmission, we excluded this optimization from Resched-DP.
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Figure 8. The performance for the mix of an SMP (8-vCPU) VM for parallel workloads and four UP VMs for sequential workloads.

4.1.2 Mix of Parallel and Sequential Workloads

We evaluated our proposed scheme in the environment where se-
quential and parallel workloads are consolidated. This environment
represents typical consolidation scenarios in data centers that em-
brace heterogeneous workloads (e.g., IaaS clouds and VDI). For
this type of mixed workloads, we ran an 8§-vCPU VM for a parallel
workload from the PARSEC suite, while corunning four 1-vCPU
VMs (called UP VMs), each of which hosted a sequential work-
load, x264 single-threaded version. As mentioned in Section 3.2.1,
the mix of sequential and parallel workloads intrinsically incurs
load imbalance. Although a UP VM was used in this evaluation, an
SMP VM that runs a sequential workload can cause similar load
imbalance by activeness-based share distribution.

Figure 8(a) shows the normalized execution time of each par-
allel workload running in an 8-vCPU VM. The first thing to note
is that the balance scheduling degrades the performance compared
to the baseline in some cases: bodytrack, canneal, facesim, ferret,
Sfluidanimate, and vips. As mentioned in Section 3.2.2, this result
is caused by ineffective vCPU-to-pCPU assignment of the balance
scheduling in the case where pCPU loads are imbalanced; a vCPU
of the 8-vCPU VM can be assigned to an overloaded pCPU where
a UP VM'’s vCPU with larger shares (up to 8 ) is running. Never-
theless, the baseline case does not always outperform the balance
scheduling due to vCPU stacking by uncoordinated scheduling.

The LC balance scheduling resolves the problem of ineffective
vCPU-to-pCPU assignment of the balance scheduling by prevent-
ing a VCPU from being assigned to an overloaded pCPU. Since
the LC balance scheduling, however, allows vCPU stacking on im-
balanced pCPU loads, unnecessary busy-waiting can happen due
to the contention between sibling vCPUs. In the case of dedup and
streamcluster, the LC balance scheduling shows lower performance
than the balance scheduling, since the negative effect of vCPU
stacking outweighs the benefit from avoiding load imbalance.

As shown in the figure, the UVF scheduling improves the
performance (by -1-89% compared to the baseline and 0-83%
compared to the LC balance scheduling) by effectively coordinat-
ing sibling vCPUs that contend with each other. In more detail,
Resched-DP improves the performance of the applications that
highly contend for wait-queue locks (dedup, facesim, ferret, flu-
idanimate, streamcluster, and x264), while TLB-Co contributes the
performance improvement of TLB-shootdown-intensive applica-
tions (dedup, ferret, and vips). As a result, the UVF scheduling
along with the LC balance scheduling achieves the best perfor-
mance among all the scheduling schemes.

We also evaluated the slowdown relative to solorun of the x264
single-threaded applications in four UP VMs. In this experiment
where eight pCPUs are fairly shared by five VMs, the workload
of a UP VM is unlikely to suffer slowdown, since each UP VM

is entitled to monopolize a single pCPU without time-sharing;
in practice, despite a dedicated pCPU, slowdown could exist by
contentions for other types of resources such as shared caches and
memory bandwidth. Figure 8(b) shows the average slowdown of
x264 in the UP VMs depending on the mixed parallel workloads
(on the X-axis) and scheduling schemes. As shown in the figure,
the balance scheduling results in noticeable slowdown of UP VMs
by up to 1.37x, while the baseline and our schemes show a little
slowdown close to one. As mentioned in Section 3.2.2, the balance
scheduling can degrade the performance of UP VMs by assigning
some VCPUs of the SMP VM to the pCPUs where those of UP
VMs are running. Such nontrivial slowdown implies that the load-
oblivious assignment of the balance scheduling can compromise
inter-VM fairness.

4.1.3 Mix of Parallel Workloads

We also evaluated the mix of parallel workloads, each of which
ran in an 8-vCPU VM. In this type of mix, every pCPU can be
time-shared by vCPUs of different VMs. We chose two corunning
applications with different characteristics: fregmine and dedup. The
fregmine application is CPU-saturated with a little communication
between threads. Accordingly, this workload consumes high pCPU
bandwidth, but infrequently preempts the currently running vCPUs.
The dedup, on the other hand, has varying CPU consumption with
a significant amount of communication between threads, thereby
inducing intensive preemptions.

Figure 9 shows the weighted speedup of corunning workloads.
The weighted speedup is the sum of the speedups relative to
solorun of each workload (i.e., X(Timesoiorun/Timecorun)) . As
shown in Figure 9(a), communication-intensive applications suffer
from unfair performance degradation while running with the CPU-
bound fregmine application under uncoordinated scheduling (i.e.,
baseline). The balance scheduling mostly resolves such degrada-
tion, since the communication-intensive workloads are likely to be
coscheduled by preempting the CPU-bound fregmine on balanced
loads, where the LC balance scheduling takes similar effect. The
UVF scheduling contributes to more performance improvement es-
pecially for TLB-shootdown-intensive applications (dedup, ferret,
and vips). Resched-DP shows little effect because of infrequent
preemptions of fregmine.

In Figure 9(b), the performance of dedup (corunner), which is
sensitive to TLB-shootdown latency with heavy communication
traffic, drops significantly in the case of the baseline. Similarly,
the balance scheduling alleviates such large performance degrada-
tion by spreading sibling vCPUs. LC balance scheduling achieves
higher performance of both workloads than the balance schedul-
ing, since loads are frequently imbalanced by the varying loads of
dedup. Furthermore, the UVF scheduling shows the best overall
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Figure 10. The performance impact of Resched-Co and the break-
down of spin-then-block barrier waits of streamcluster that coruns
with bodytrack.

performance along with the LC balance scheduling. Some drops
in weighted speedup in the case of Resched-DP alone stems from
the performance degradation of dedup, since the delayed preemp-
tion of a main workload defers the TLB-shootdown of dedup. This
problem is resolved in the case where TLB-Co is applied.

4.2 Coordination for User-Level Contention

As mentioned in Section 3.1.2, inter-thread communication in a
synchronization-intensive application can be recognized as bulk
traffic of reschedule IPIs. For this type of synchronization-intensive
applications, user-level contention can be reduced by coschedul-
ing vCPUs in response to their reschedule IPIs. For the evalua-
tion, we chose streamcluster, which intensively uses its in-house
barrier, from the PARSEC suite. The streamcluster application is
coscheduling-friendly, since it adopts a spin-then-block synchro-
nization in its in-house barrier designed for the fine-grained syn-
chronization. Using this primitive, when a thread reaches a bar-
rier, it firstly spins for a short period (approximately 0.1ms) and
is then blocked if all threads have not arrived at the barrier yet. If
all the threads are coscheduled and their computation loads are not
skewed, more barrier waits avoid blocking, which induces context
switch and VMEXIT, at the smaller expense of spinning. We coran
bodytrack, by which streamcluster suffers larger interference than
any other mixes. For Resched-Co, when a reschedule IPI is initi-
ated, its recipient vCPU enters urgent state for 500us, which is the
same as the urgent tslice.

Figure 10(a) shows the performance improvement of stream-
cluster to which Resched-Co is applied; Resched-DP and TLB-Co
were enabled in both cases. As shown in the figure, Resched-Co
improves the performance by 8% in the case of spin-then-block

barrier while the performance of bodytrack is not affected (the re-
sult for bodytrack is omitted from the graph for brevity). As ex-
pected, this improvement is higher than that of block-based barrier
(2.7%). This result demonstrates that spin-then-block synchroniza-
tion is more coscheduling-friendly. In order to identify the effect
of coscheduling, we obtained the information of barrier waits with
regard to how many waits are resolved in spin phase and whether
additional contentions occur. Figure 10(b) shows the breakdown of
barrier waits in streamcluster.

The in-house barrier internally uses a pthread conditional vari-
able in two ways. Firstly, an arrival barrier is used for all threads
to wait for synchronously proceeding to a next stage. Secondly, a
departure barrier is used to make sure all threads to entirely depart
from a previous stage before starting a next arrival phase. The num-
ber of arrival barrier waits is deterministic in the program, whereas
departure barrier waits can be increased if the execution of an awak-
ened thread on the arrival barrier is delayed until another thread ar-
rives at the barrier after completing the current stage. Accordingly,
the number of departure barrier waits could be increased by the
skewed execution of threads. As shown in the figure, block-waits
are reduced by 38% due to the parallel executions on coscheduled
vCPUs by Resched-Co. In addition, the number of departure bar-
rier waits is also reduced by 29%, since the progress of threads is
less likely biased by coscheduling. As a result, the wait behavior
of coscheduling is close to the solorun, compared to that without
coscheduling.

The reduction in blocking operations leads to less reschedule
IPIs required for synchronization because a reschedule IPI is trig-
gered to wake up a blocked thread. In this experiment, Resched-Co
decreases the number of reschedule IPIs for streamcluster by 21%.
Such IPI reduction alleviates the cost of hypervisor interventions
for IPI communication (e.g., VMEXIT and APIC virtualization).
Furthermore, the association between the reduction in resched-
ule IPIs and the benefit from coscheduling can allow the hyper-
visor to infer coscheduling-friendly workloads. If the bulk traf-
fic of reschedule IPIs is reduced once vCPUs are coscheduled by
Resched-Co, the hypervisor can infer that the coscheduling has a
positive effect on the applied workload.

4.3 Effectiveness with Hardware-Assisted Contention
Management

We evaluated our scheme on Intel PLE-enabled processors [12],
which support hardware-assisted contention management described
in Section 2.2. For this experiment, our prototype was installed on
Dell PowerEdge R710 equipped with two quad-core Intel Xeon
E5607 2.27GHz processors. For the processors to detect busy-
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Figure 11. Normalized execution time and CPU cycles of parallel workloads in an SMP VM mixed with four UP VMs running x264 on

PLE-enabled processors.

Application
| Reduction in pause-loop exits (%) ]

[[ streamcluster [ facesim [ ferret | vips |
75 | 97 | 740 [ 3719

Table 2. Reduction in pause-loop exits by the UVF scheduling
compared to the baseline.

waiting, PLE_Gap and PLE_Window [12] were set to 128 and 4096,
respectively; these values are used in KVM and Xen by default. In
PLE-enabled processors, the UVF scheduling cancels urgent state
once a pause-loop exit occurs, since this exit indicates that the
urgent VCPU starts unnecessary busy-waiting. We evaluated the
mix of a parallel and four sequential workloads as in Section 4.1.2
with two futex-intensive applications (streamcluster and facesim)
and two TLB-shootdown-intensive applications (ferret and vips) as
parallel workloads.

Figure 11 shows the average execution time normalized to the
baseline and CPU cycles for lock spinning and TLB shootdown. As
shown in the result, the performance is improved by 8-13% in our
scheme (LC balance scheduling with Resched-DP and TLB-Co). It
is because our scheme proactively alleviates the number of busy-
waits, whereas the hardware-assisted scheme reactively resolves
contention by yielding a pCPU once busy-waiting is detected. Note
that our proactive coordination significantly reduces the CPU cy-
cles for lock spinning and TLB shootdown. Alleviating the number
of busy-waits, furthermore, leads to the reduction in pause-loop ex-
its. As shown in Table 2, the number of pause-loop exits is reduced
by 37.9-97.7%, which means much lower overheads of hypervisor
intervention.

Nevertheless, the hardware support to notify the hypervisor of
prolonged busy-waiting is an essential fallback, since scheduling-
oriented schemes cannot completely eliminate all the excessive
busy-waiting in guest OSes. Although Resched-DP is effective
for communication-intensive applications, it cannot resolve the
LHPs that happen in the kernel without reschedule IPI commu-
nication. Other than lock spinning, furthermore, busy-waiting has
been prevalently used in the kernel for performance optimization
based on the assumption that CPUs are physically dedicated. In
this regard, the hardware-assisted scheme is complementary to our
coordinated scheduling for efficient contention management.

In addition, the current yielding scheme on a pause-loop exit
can be refined with the aid of the UVF scheduling. Currently, at
every pause-loop exit, a vCPU tries to yield the pCPU to another
regardless of the type of busy-waiting. The UVF scheduling, how-
ever, can allow a vCPU that sends a TLB shootdown IPI to busy-
wait for more time favorably without yielding the pCPU if its re-
cipient vCPUs can be urgently scheduled. Since the hypervisor can
identify if the current busy-waiting is for TLB synchronization by
checking the transmission of TLB shootdown IPIs, it can determine
whether a vCPU yields its pCPU or busy-waits for additional time
slice based on the urgent scheduling of recipient vCPUs.
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Figure 12. The performance impact of the delayed transmission
of reschedule IPIs (denoted as DelayedResched) by means of OS
modification.

5. Discussion

With regard to wait-queue LHP, OS re-engineering is a possible
approach to eliminate the root cause of the problem. As explained,
most wait-queue LHPs arise from reschedule IPI transmission in-
side a spinlock-protected critical section, since the IPI transmis-
sion can break the critical section by expensive VMEXITs while
involving vCPU wake-up. In order to avoid this problem, the ker-
nel can delay the IPI transmission until exiting the critical sec-
tion. Since a reschedule IPI is not mandated to be tightly coupled
with thread wake-up, it can be safely deferred right after the end
of a spinlock-protected critical section, which is generally short
and non-preemptable. The engineering cost, however, is nontrivial
because every critical section within which thread wake-up is in-
voked should be modified. We simply modified futex-related wake-
up procedures (futex_wake and futex_requeue), which are hot spots
of wait-queue LHP, to use the delayed reschedule IPIs.

Figure 12 shows the performance of streamcluster and facesim,
which are futex-intensive, in the same consolidation scenario
as Section 4.1.2 (mix of a parallel and four sequential work-
loads). The delayed transmission of reschedule IPIs is denoted
as DelayedResched. As expected, DelayedResched improves
the performance of the baseline and the LC balance scheduling
by excluding reschedule IPIs from critical sections protected by
futex-queue spinlocks. The performance improvement is compa-
rable to the case of our scheduling-based solution, Resched-DP.
Based on the result, we believe that the likelihood of LHP due to
IPI transmissions and VMEXITs can be effectively curtailed by
virtualization-friendly OS re-engineering.

In addition, virtualization-friendly spinlocks are compelling OS
re-engineering. The default spinlock implementation of the Linux
kernel is ticket spinlock, which enforces FIFO-based lock acquisi-
tions for fairness. The ticket spinlock does not fit for virtualized
OSes, since a vCPU can excessively busy-wait for not only a pre-
empted lock-holder, but also preempted lock-waiters that precede



the vCPU in FIFO order. For this reason, traditional unfair spin-
locks are considered to be efficient for virtualized OSes by allow-
ing lock acquisitions regardless of wait order. Furthermore, as men-
tioned in Section 2.2, helping locks such as spin-then-block locks
are more virtualization-friendly by reducing the amount of unnec-
essary spinning; those locks have analogous effect to hardware-
assisted contention management. Although OS modification would
be nontrivial task, compact and well-designed re-engineering has
become highly advocated along with hypervisor-level solutions.

6. Conclusions and Future Work

This paper proposes a demand-based coordinated scheduling,
which dynamically manipulates time-sharing for coscheduling and
delayed preemption in response to inter-vCPU communication,
IPIs. On the basis of in-depth analysis on the relationship between
synchronization behaviors and IPI communications for consoli-
dated multithreaded workloads, we argue that IPIs are effective sig-
nals for the hypervisor to coordinate vCPUs. A TLB shootdown IPI
can notify the hypervisor of urgent scheduling demand of a recip-
ient vCPU, while a reschedule IPI implies that an initiating vCPU
likely holds a wait-queue spinlock, and that a recipient one possibly
involves user-level synchronization. These coordination demands
related to IPIs are dominantly found in emerging multithreaded
applications. In addition, our load-conscious balance scheduling is
essential in the situations where global loads are transiently or in-
trinsically imbalanced. We believe that such load imbalance could
frequently happen in heterogeneously consolidated environments
such as IaaS clouds and VDL

We plan to extend our coordinated scheduling to support au-
tomatic detection of user-level synchronization demands and ex-
pand the coverage of inferring lock-holder vCPUs. Currently, we
rely on a priori information about coscheduling-friendly applica-
tions with regard to user-level synchronization. We can enable the
hypervisor to monitor the rate of reschedule IPIs for the inference
about coscheduling-friendly workloads. In addition, as can be seen
in the early preemption delay, there are more chances to infer a
lock-holder vCPU that involves hypervisor intervention. We will
reinforce the delayed preemption by increasing the coverage that
infers lock-holder vCPUs. Finally, we are exploring cooperation
with paravirtualized approaches and hardware-assisted contention
management.
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