Task-aware Virtual Machine Scheduling for I/0O Performance

Hwanju Kim Hyeontaek Lim

Jinkyu Jeong

HeeseungJo Joonweh Le

Computer Science Department, Korea Advanced InstituteigiSe and Technology (KAIST)

hjukim@calab.kaist.ac.kr, limh@kaist.ac.kr, {jinkyu,heesn}@calab.kaist.ac.kr, joonwon@skku.edu

Abstract

The use of virtualization is progressively accommodatingise
and unpredictable workloads as being adopted in virtuaktdps
and cloud computing environments. Since a virtual machineim
tor lacks knowledge of each virtual machine, the unpretlietsess
of workloads makes resource allocation difficult. Partely, vir-
tual machine scheduling has a critical impact on I/O perforag in
cases where the virtual machine monitor is agnostic abetntbr-
nal workloads of virtual machines. This paper presentsladnsre
virtual machine scheduling mechanism based on infererde te
niques using gray-box knowledge. The proposed mechanism in
fers the 1/0-boundness of guest-level tasks and correlatesing
events with 1/0-bound tasks. With this information, we auuce
partial boosting, which is a priority boosting mechanism with task-
level granularity, so that an I/O-bound task is selectisajeduled
to handle its incoming events promptly. Our technique fesusn
improving the performance of I/O-bound tasks within hegero
neous workloads by lightweight mechanisms with complet& CP
fairness among virtual machines. All implementation isfowed to
the virtualization layer based on the Xen virtual machinenitoo
and the credit scheduler. We evaluate our prototype in tefri®
performance and CPU fairness over synthetic mixed world@adi
realistic applications.

Categories and Subject Descriptors D.4.1 [OPERATING SYS
TEMS): Process Management—Scheduling

General Terms Experimentation, Performance

Keywords Virtualization, Scheduling, Inference, Virtual Ma-
chine, Xen

1. Introduction

As system virtualization has matured rapidly in terms offqer
mance, reliability, and administration, the applicatidnvotual-
ization is expanding into diverse parts of the computingireny
ment. System virtualization allows a large number of maehito
be consolidated in limited physical hardware so that resouti-
lization and management are efficient. Due to the high perdoice
hardware and paravirtualization techniques, the degresachine
consolidation has grown considerably. Recently, Sun andve(id

1Currently at School of ICE, Sungkyunkwan University, Korea

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE'09, March 11-13, 2009, Washington, DC, USA.
Copyright(© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

introduce virtual desktop infrastructure [1, 2], which sotidates
virtual desktop images in a server farm. Desktop users cegsac
their virtual desktop through terminal devices such asmadhéent

or a mobile device. The extension of virtualization fromvserto
desktop environment makes the virtual machine monitor (MMM
accommodate various and unpredictable workloads.

Since diverse workloads are feasible on consolidated alirtu
machines (VMs), the VMM has difficulty in resource allocatio
due to a semantic gap with guest operating systems. The §eman
gap [9] is inevitable because different operating systeave ltheir
own sophisticated mechanisms and policies, whereas the VMM
has lightweight components and narrow interfaces. Thiblpro
impedes the efficient allocation of hardware resourcesrmgef
how much and when the resources are required by each VM. To
bridge the semantic gap, VMM-level inference techniqués 1B,

14, 16], which estimate the internals of a guest operatirsgesy
by monitoring system events, have been proposed with respec
buffer cache, task tracking, hidden process detectionsaridrth.

The unpredictableness of workloads makes CPU allocation
hard, especially with regard to timeliness. Since the VMNkia
knowledge about existing tasks in each guest operatingrsyst
it has difficulty in considering mixed workloads on VMs. Incid
tion, the VMM does not track which I/O event is destined foiieth
blocked tasks. Such a semantic gap can degrade resporssyese
pecially when many VMs are consolidated and their worklceads
diverse. For example, when a lot of VMs contain both 1/O-lmbun
and CPU-bound workloads, they could have poor I/O respensiv
ness because the VMM cannot timely relate a received eveht wi
an 1/0-bound task. If the VMM schedules the destined VM witho
considering its internal workloads, unrelated CPU-bowasks in
the VM could exhaust its allocated CPU; hence, such schegluli
induces poor fairness among guest VMs. Therefore, the VMM re
quires guest-level task awareness and the correlationekatan
incoming event and an 1/0-bound task.

This paper presents a task-aware VM scheduling mechanism fo
improving the performance of 1/0-bound tasks within a VM.rOu
main goal is to improve the responsiveness of I/O-boundstask
lectively from CPU-bound workloads with complete CPU faiss.

To identify 1/O-bound tasks in mixed workloads, we use gbay-
knowledge based on general characteristics for I/O-boasidst By
observing scheduling order and CPU consumption for ead) tas
the VMM regards a task that is preemptively scheduled inaese

to an I/0O event and consumes short CPU time as an 1/0-boukd tas
Furthermore, the VMM considers multiple observations &tisti-
cally reinforce the inference. Our inference techniqueubh event
monitoring and time measurement keeps the VMM lightweight.

To enhance 1/0 performance, we introduce partial boosting
and correlation mechanisms on the basis of inferred infiona
for 1/0-bound tasks. First, partial boosting is a prioritgdsting
mechanism with task-level granularity. Partial boostingldes the
VMM to boost the priority of a virtual CPU (VCPU) that has an
inferred 1/0-bound task in response to an incoming eveng. i

ority boosting is only kept up while the inferred I/O-bourask
handles the event. Therefore, partial boosting efficieintigroves
1/0 responsiveness without compromising CPU fairness gmon
VMs. Second, our correlation mechanisms help the VMM asso-
ciate an incoming event with an 1/0O-bound task. Based onahe ¢
relation information, the VMM initiates partial boostinglg when

an incoming event is highly likely to be received by an inéetr
1/0-bound task. This mechanism filters ineffective parbabst-
ing that could be conducted in response to an event for r@n-1/
bound tasks. Our correlation mechanisms for block and mé&two
1/0 events are best-effort with lightweight inference teiclues.

We implement our task-aware VM scheduling mechanism on
the credit scheduler, which is the latest scheduler of the Xe
VMM. Although the scheduling-related features such asigart
boosting are implemented in the credit scheduler, we ptesen-
mon interfaces for our mechanism to be ported to other piatent
schedulers. The inference mechanism for estimating |/@oess
and the correlation mechanisms are implemented in the stdred
independent part of Xen. Since our mechanism is confinedeo th
virtualization layer without any modification to guest keknvar-
ious operating systems can take advantage of the mechaimism.
the evaluation section, we show the 1/O performance improve
ment in terms of responsiveness and throughput in the wass ¢
scenario. Furthermore, the correlation mechanisms farkbémd
network 1/0O are evaluated by using synthetic workloadsal®n
we demonstrate 1/0O performance gain for our system on tealis
workloads.

The remainder of this paper is organized as follows: Se@ion
describes the Xen VMM and the credit scheduler as our impteme
tation background. Section 3 introduces the design anchtiparof
the proposed task-aware VM scheduler. Section 4 explaipteim
mentation details of our Xen-based prototype. Section Sctem
strates and discusses experimental results for varioukleears.
Section 6 compares our mechanism with related work. Fina#g-
tion 7 concludes our work and presents a future direction.

2. Background

This section explains the terminology, the 1/0 model, areddtedit
scheduler of the Xen VMM.

2.1 Xen Overview

Xen [4] is an open-source VMM based on a paravirtualizatemit
nigue, which achieves higher performance than full viizgdion
approaches. The paravirtualization endeavors to miniwiizeal-
ization overheads through an interface, namgsrcall, between a
guest operating system and the VMM by modifying the guest ker
nel. Xen makes the privileged VM, calleibmainO, in charge of
managing other guest VMs, callédmainU.

Xen introduces thésolated driver domain (IDD), which con-
ducts real 1/0 operations to a bare device on behalf of dodwin
for reliable 1/0 architecture [8]. This I/O model enhanche te-
liability of an entire system by isolating the faults indddaey de-
vice drivers in an IDD. Moreover, an IDD can operate existileg
vice drivers and multiplexing software such as a networkldei
This I/O model requires guest domains to use virtual deviters
for transparent I/O access. A virtual frontend driver in andnU
communicates with a corresponding virtual backend driwiich
resides in an IDD and forwards delivered I/O requests to wenat
device driver.

A frontend driver and a backend driver notify each other of an
1/0 event through arvent channel. The event channel mechanism
virtualizes a hardware interrupt. A virtual interrupt isngéng in
the corresponding event channel and then is delivered o t
target domain when the domain is scheduled. The latencydegtw

pending and delivered events obviously depends on the kyigr
VM scheduling mechanism.

Xen allocates one or more VCPUs to a domain when the do-
main is created. A VCPU contains general information relate
scheduling and event channels because the VCPU is a safgduli
entity. The event channel information in a VCPU is sharedtby i
owner domain and the VMM through a shared page for efficient
interrupt handling. When a VCPU is scheduled, the paraafizad
event driver checks whether its event channel has a penderg.e
If so, the driver invokes the corresponding interrupt handbutine.

In this manner, a physical interrupt that is delivered in\théM is
pending in the event channel of an IDD, and the IDD processes
1/0 and sends a virtual interrupt to the event channel of anget
domain by using hypercall.

Xen currently enables the domain0 to choose a schedulergamon
two schedulers: the simple earliest deadline first (SEDR¢daler
and the credit scheduler. The SEDF scheduler makes eaclirddma
specify a required time slice in a certain period; a (sliegiqul) pair
represents how much CPU time a domain is guaranteed in alperio
The SEDF scheduler preferentially schedules a domain with t
earliest deadline. This scheduler achieves satisfactoaity on
the environment where a domain includes decidable or e
workloads such as a streaming server with a constant bitTae
credit scheduler is a proportional share scheduler withae lmal-
ancing feature for SMP systems. The virtue of the credit doles
is the simplicity of the operation with reasonable fairngsaran-
tee and performance, whereas the SEDF scheduler requirel-a w
tuned parameter configuration.

2.2 Credit Scheduler

The credit scheduler regards a time quantuncrasit, which is
determined by the definedeight for each domain. The credit of
a running VCPU is debited by 100 every tick period (10 ms); all
active VCPUs are given the credit calculated by the weigltheif
domain every credit period (30 ms). The credit of a VCPU isluee
determine its priority once a credit period. If a VCPU hasaéring
credit (credit> 0), its priority iSUNDER (—1). Otherwise a VCPU
is given0VER (—2) priority, which means the VCPU has consumed
more than its allocated credit. All VCPUs with the priority o
UNDER are scheduled before those with the priorityoGER; a run
gueue maintains VCPUs willNDER followed by those wittOVER,
and the scheduler picks a VCPU at the head of the run queue as a
next VCPU. Once a VCPU is scheduled, it receives the time slic
of 30 ms and runs consuming its credit. When the time slice of a
running VCPU expires, the VCPU is descheduled and is put into
the tail of a list that contains VCPUs with the same priorisytiae
descheduled VCPU. If a running VCPU does not have any ruenabl
task in spite of time remaining in its time slice, it is blodkand
leaves the run queue.

The credit scheduler allows a VCPU to preempt a running one
to improve the performance of I/O-bound domains by using a
boosting mechanism. If a VCPU has only I/O-bound tasks, it is
usually blocked with slight credit consumption. When anngve
is pending to the blocked VCPU, the VMM wakes up the VCPU
and inserts it into the run queue. Since the VCPU waits until
the preceding VCPUs are descheduled, the event deliverypean
delayed. To achieve low latency, the credit scheduler Isothst
priority of a woken VCPU if its priority iSUNDER—the VCPU
has been blocked with remaining credit. The boosting mdshan
assigns the priority a800ST (0), the highest priority, to the woken
VCPU and allows it to preempt a running VCPU. The VCPU of an
1/0-bound domain usually retait®NDER priority because such a
VCPU typically consumes much less than a tick period. Tloeegf
1/0-bound domains frequently preempt a running domain aod t
achieve the improved responsiveness and throughput [20].

100

Doml: intensive I/O + CPU-bound

Native Linux(l/O+CPU) —— Dom2~5: CPU-boun

XenoLinux(l/O) - %0
XenoLinux(/O+CPU)

60

CDF

40

CPU usage (%)

20

S 4
Domain ID
(a) Response time for three cases(b) CPU usage for aggressive boost-

ing

0 =
2 4 6 8 10 1 2
Response time (ms)

e B
5 6

Figure 1. Necessity of task-awareness

3. Task-aware VM Scheduling

Although a VCPU-level scheduling mechanism is quite singpie
supports fairness well, it has limitations due to the semaydp.
Once the VMM allocates a physical CPU to a VCPU, the VMM
fully relies on the guest kernel scheduler on the VCPU during
the time slice. Hence, the VCPU-level scheduler does naktra
the internal tasks of a VCPU. In spite of the simplicity, tlaeK

of knowledge about the guest-level workloads could lead/@ |
performance degradation, especially for timeliness. Arbbund
task that is mixed with heterogeneous workloads cannotateve
its 1/0-boundness to the VMM because the characteristicaohe
individual task is unrecognized at the VMM. For example, whe
an event is pending to an idle VCPU, which has no runnableitask
its previous time slice, the credit scheduler preferelytdhedules
the VCPU by the boosting mechanism. However, if the VCPU is
not idle, the credit scheduler does not boost the VCPU evaugtin

a corresponding event is pending. An I/O-bound task runimitige
non-idle VCPU does not take advantage of the boosting mésiinan
and consequently has low responsiveness.

Figure 1(a) shows the effect on the response time of an inter-

active workload over the credit scheduler in accordancé thie

workloads of a domain. We simply measure the response time

while a client in a separate machine repeatedly requestsall sm
network packet to a server in a domain that is consolidatet wi
five CPU-bound domains. As shown in the graph, the serveravith

CPU-bound task never benefits from the boosting mechanisin an

consequently suffers from low responsiveness. The shapkeof
CDF graph in this case is totally different from that of a wati

the intensive I/O of domainl makes the other domains stahitew
significantly compromising fairness.

To achieve both low I/O latency and fairness of CPU alloggtio
the VMM needs to elaborate the boosting mechanism with knowl
edge about the characteristics of guest-level tasks. Oinm gual
is to boost a VCPU when a pending event is destined for an 1/O-
bound task in the VCPU while guaranteeing overall CPU faisne
This section describes tracking I/O-bound tasks, partaisting,
and correlation mechanisms.

3.1 Tracking I/O-bound Tasks

To distinguish 1/0-bound tasks within the mixed workloatise
VMM should track tasks in domains at the virtualization layss

an alternative approach, a guest kernel scheduler can iciivety
inform the VMM of the information about I/O-bound tasks. $hi
approach, however, requires the modification of the guesteke
and assumes that all domains are trusted. To pursue a mosiet
approach, we use the previously proposed method to tra&k tas
at the virtualization layer by monitoring the access to thiglt¥
hardware [14]. In MMU-enabled operating systems, a taskahas
private virtual address space provided by the paging faodf
the MMU in the protected mode. A guest operating system shoul
access the MMU when switching tasks by its scheduler. The VMM
can capture the task switching event because the VMM viresl
the MMU hardware.

The VMM uses gray-box knowledge to infer the I/O-boundness
of guest-level tasks by observing low-level interactiortween
the guest kernel and hardware. The VMM controls 1/O openatio
through event channels and monitors how tasks are scheluled
a kernel scheduler. Based on the information acquired byi-mon
toring such events, the following general gray-box criteran be
assumed.

1. The kernel policy for I/0O-bound tasks: A priority-based pre-
emptive scheduler, which is prevalent in commodity opatati
systems, preferentially schedules an 1/0-bound task witen-a
responding 1/O event occurs for low latency [5, 21, 19].

2. The characteristic of 1/0-bound tasks An 1/O-bound task
typically consumes little CPU time, since its executiondimm
dominated by the wait time for an I/O event [18].

The first inference relies on the kernel policy by regarding a
task that is preemptively scheduled in response to an egeaha
1/0-bound task. In order to firmly characterize its 1/0-bdoass,

Linux for the same workload. The response time is presumed to the VMM also considers the CPU consumption of the inferréd I/

be degraded as the physical machine consolidates more gmai
most of which consume CPU time. The server without a CPU-
bound task, on the other hand, almost preempts a runningidoma
without waiting for the other domains with the aid of the bivos
ing mechanism; the improved response time is close to thteof
native Linux.

In the VCPU-level scheduler, there is a critical trade-cgf b

bound task based on the second criterion. The short CPU egqmisu
tion of an 1/0-bound task is a crucial characteristic to coeene
the trade-off between responsiveness and fairness. A tikskhe
two characteristics can selectively achieve high respensiss in
its VCPU without compromising overall CPU fairness among-VC
PUs by partial boosting, which is detailed in next section.

By checking the two criteria, we classify observations of

tween responsiveness and fairness. As a naive approacletfor b scheduling events into three disjoint clasg®sitive evidence, neg-

ter responsiveness, we consider aggressive boostinge NV
aggressively boosts a VCPU without considering internatkwo
loads whenever a corresponding event arrives, the CPUefsrn
could be compromised, whereas the responsiveness is iethrov

ative evidence, andambiguity. The observation of a task is positive
evidence if the observation supports the task being I/Qrboif

the observation indicates that the task is not 1/0O-bounbklibngs
to the negative evidence class. Ambiguity means that thereas

In Figure 1(b), we show the worst case result of the aggressiv tion cannot help the VMM infer 1/0O-boundness. Figure 2 shaws

boosting. Domainl runs a network-intensive workload wi@R-

bound task, and the other five domains have CPU-bound work-

loads. Whenever an incoming packet is pending to domaielagh
gressive boosting mechanism preemptively schedules tHta
domainl regardless of its priority and state. Since the VMMrg

example of task scheduling during the time slice of a VCP@raft
an event is pending. We defih®threshold to determine the short
CPU consumption; 0.5 ms is used in this example. After the VCP

with a pending event is schedulet immediately preempts1

and runs for less CPU time thd®threshold. Since multiple tasks

antees a time slice to the scheduled VCPU as long as the VCPUcould wait for the event, we also consides, which is consecu-
has runnable tasks, the CPU-bound task in domainl exhduests t tively scheduled after2 with short CPU consumption. Hence, the

given time slice after the incoming packet is handled. Tioeeg

observations df2 andT3 are positive evidence. On the other hand,

IOthreshold = 0.5ms
. (10, t1, 12, t3, t4, 15, 16) = (0, 0.1, 0.3, 0.5, 2.5, 2.8, 5.5) ms
event pending
Yo
T1.T2 T3} T4 TS5 T6
l 177 |l
I 1 |
VCPU fg t; 2 t3 4 15
scheduling

s vcPU
descheduling

Figure 2. Inference for I/O-bound tasks

T4 andT6 have negative evidence because they satisfy neither of .

our two criteria. We regard the observationTdf as ambiguity in
spite of short CPU consumption, since the CPU time is likedyrf
the immediate preemption aR. T5 has short CPU consumption,
but is scheduled after a task with long CPU time. Due to the cas
where an 1/0-bound task has temporarily low priority in ttiree
slice, we also regard the caseTaf as ambiguity.

Then, the VMM considers multiple observations for reliaile
ference. Although the above gray-box knowledge explainst o
tivities of the task scheduler of a guest kernel, there aceraties
that violate the gray-box knowledge. For example, an I/@rab
task may show an exceptionally long CPU time when the operat-
ing system interrupts the execution of the task and proseisse
ternal data without switching the virtual address spact¢héncase
of Linux, akernel thread uses the address space of the previously
descheduled task to avoid address space switching. On liee ot

for the VCPU regardless of its priority if the VCPU has at tezse
inferred 1/0-bound task. A partially boosted VCPU can prpem
running VCPU and handle the pending event. The VMM revokes
CPU from the partially boosted VCPU when the guest operating
system schedules a task that is not inferred as 1/0-bourel pfih
ority of the descheduled VCPU is reassigned by the originhtp
of the scheduler, and then the VCPU is inserted into the reugu
based on the returned priority.
When an 1/0-bound task that is mixed with CPU-bound tasks
intensively conducts 1/O operations, its VCPU is partiddbosted
very frequently. Since partial boosting is conducted rélgss of
the state and priority of a VCPU, unrestricted partial bmast
causes excessive preemptions while repeatedly intenguptiher
VCPUs. Moreover, a frequently boosted VCPU can greedily use
shared I/O resources. To relieve this problem, we deéfBmatio
to restrict uncontrolled partial boosting. PBratio is pEfboosting
allowance, which is maintained for each VCPU and is defined as

Allowed CPU usage for partial boosting

Total CPU usage

PBratio means the CPU fraction that is allowed for partialdimg
in the total CPU usage of a VCPU. Both total CPU usage and the
usage by partial boosting are periodically reset to zerardeioto
consider a recent tendency. With low PBratio, only an irtévea
application, which is not 1/O-intensive, has the high qtyadif re-

PBratio =

hand, a CPU-bound task may have a short CPU time when the tasksponsiveness by partial boosting. On the other hand, higatRB

is preempted by the scheduling policy of its kernel. To owserb
vation, these anomalies are rare but not negligible. Weethex
relieve this uncertainty by adopting a statistical apphoac

The VMM maintains thalegree of belief on the 1/0-boundness
for each task. The degree of belief for a task is a variablé tha
represents how certain the VMM is that the task is 1/0-bound.
The degree of belief for a task is initially zero, which medns
VMM has no bias for the 1/0-boundness of the task. Every time
the VMM observes positive evidence, the VMM adéssitiveEv
to the degree of belief of the descheduled task. For the megat
evidence, the VMM subtractdegativeEv from the degree of belief.
We simply ignore ambiguity because it does not help detengin
1/0-boundness. The VMM assumes that a task is I/O-boundibnly
its degree of belief is larger thdel Threshold. Finally, we restrict
the degree of belief for each task to be in a certain rangedardo
allow the VMM to quickly adapt the degree of belief to the euntr
1/0 characteristic of the task.

The degree of belief and the evidence are concepts of statis-

tical inference techniques such as a Bayesian inferencditikel
evidence can be represented as log odds, which is the wdight o
idence [10]. For more intelligent inference, the VMM can dym
ically change PositiveEv and NegativeEv by learning waaki®
on a VM. The learning technique, however, is somewhat expen-
sive for the VMM, which is a performance-critical system. fdo
importantly, the VMM cannot exactly identify the operatioha
guest kernel, and gray-box knowledge has limitations faalligent
learning. Therefore, we use static parameters in our cuimgie-
mentation and evaluation. The use of dynamic parameteiesog
ing efficiently and static parameters by deciding empiljcare
challenging problems to enhance the task-awareness ofi¥th.\V

3.2 Partial Boosting

Based on inferred information for 1/O-bound tasks, we de\as
partial boosting mechanism to improve 1/O responsivendsisew
keeping CPU fairness. As described in Section 3, an aggeessi
boosting could compromise the fairness. To improve 1/O @asp
siveness with fair CPU allocation, we want only 1/0O-bounsk&

to preempt a running VCPU in response to an incoming event for
immediate 1/0O processing and yield CPU to another VCPU. When
an event is pending for a VCPU, the VMM initiates partial b

makes an I/O-intensive task achieve high throughput aghats
domain uses more I/O resources. If PBratio is zero, our sdbed
runs in the same as the original scheduling mechanism. Tdia-ev
ation of PBratio is presented in Section 5.1.

Although ideal partial boosting lasts a short time near t€sh-
old, there are some cases where the duration of partialibgast
prolonged. First, partial boosting can occur in responsant&/O
event that is handled in kernel only and is not delivered totask.
For example, an ARP request packet is handled in the kermkl an
does not wake up any task. In this case, partial boostingds pr
longed until the boosted VCPU schedules a non-l/O-bounkl tas
or exhausts its time slice. For the worst case, a CPU-bowsid ta
uses up the entire time slice of the boosted VCPU. Secondy-an i
ferred I/O-bound task may start consuming CPU right aftetiga
boosting. The effect of such varying workloads can be reliely
assigning a relatively larger value to NegativeEv than fRedtv.
Furthermore, the VMM can forcibly revoke CPU from a VCPU
that keeps partial boosting for some time. This mechanisiw; h
ever, can incur overheads for managing an individual tirmee&ch
partial boosting. Without the need of maintaining addigiloiimers,
we make the VMM restrict the duration of one partial boostng
a tick granularity. Moreover, the prolonged partial boagtcan be
significantly alleviated by our correlation mechanism dibszl in
the next subsection.

3.3 Correlation Mechanisms

Partial boosting based on only the I/O-boundness of tasksh®a
limitations due to the lack of correlation between an evemt a
task. Partial boosting could be initiated in response to\ante
that is destined for a non-1/0-bound task without the catreh in-
formation. Since the partial boosting mechanism revokescthU
from a boosted VCPU as soon as the non-1/0O-bound task is sched
uled, such partial boosting is meaningless while incurtingec-
essary preemption. Similarly, an event to be handled by ¢neek
only may cause useless prolonged partial boosting. Theslesrr
tion mechanism therefore is essential for effective phb@sting

in that the VMM patrtially boosts a VCPU only if an 1/0O-bound
task in the VCPU is likely to receive an incoming event. We de-
vise correlation mechanisms for two representative I/Gagev a
block device and a network device. We consider only blockl rea

and network reception events, to which users are latenutsitses.
The main objective of our correlation mechanisms is to deites
whether a pending event is destined for an I/O-bound taskcoh
relation mechanism addresses event identification, eivel and
accuracy issues.

3.3.1 Block /O

The correlation for block 1/O is relatively simple in thatktlevent
of block read completion is paired with its request event.

Event identification. In the case of block read 1/0, a guest
kernel explicitly sends a block read request to a block degiiver.
The device driver then requests a DMA operation to a blockcgev
When the requested block is transferred to the memory via DMA
the block device generates an interrupt that notifies thedker
of an 1/0 completion. Due to the request-response procedire
block read I/O, a read 1/0 completion event can be identified b
requested block number.

Correlation. As a simple method, the VMM correlates a re-
quested block 1/0 with the task running at the request time. A
curate correlation, however, is challenging because arablotock
request can be delayed from a user request by the statusgpieste
queue and the policy of a kernel I/0 scheduler. Jones [13]qzes
a more accurate correlation than the simple method by eipioi
that operating systems typically copy contents in the uféehe
into a user buffer. In spite of better correlation, this wgne incurs
overheads for maintaining inverse memory mapping and hapdl
intentional page faults.

In our mechanism, we are interested in whether a block réad I/
is requested from an 1/0O-bound task. In order to considetaydd
block request, the VMM inspects not only a current task, t&d a
previously scheduled tasks at a request time. The VMM regard
block request as sent by an I/O-bound task if at least oneretfe
1/0-bound task is insidenspection window at the request time.

For example, an I/O-bound task and a non-1/0O-bound tagke
request the 100th block and the 200th block, respectivaly,the
inspection window size is two. The two requests are inseniéue
request queue of a block device driver. If the block devideedr
handles these requests whe is running, the VMM inspects
T1 and T2 within the inspection window. Sinc&1 is an I/O-
bound task, the requests for the 100th and the 200th bloeks ar
considered as sent by an I/O-bound task. When a read coopleti
event for the 100th block is pending, the VMM partially baoste
corresponding VCPU so that promptly handles the event.

Accuracy issues. This window-based correlation is a best-
effort approach because it could remain some false pogitivéal
boosting. When a read completion event for the 200th block is
pending, the VMM also boosts this VCPU even thoaghwhich is
supposed to receive the pending event, is not I/0-boundh false
partial boosting, however, rarely occurs, since a taskitiaferred
as non-l/O-bound is unlikely to conduct I/0 requests frediyeln
the case of the Xen 1/0 model, furthermore, a batch of I/O estgl
from a guest domain alleviates the false positive partiaistiog
because an IDD also batches some responses for simulténeous
requested 1/O to improve throughput.

3.3.2 Network I/O

The correlation for network 1/0 is more complicated thanttha
for block 1/0 because a network packet arrives asynchrdpous
whereas a block operation is only conducted in response &x-an
plicit request from the kernel. Due to this characterigtie, VMM
correlates the event of an incoming packet with a task thraug
posterior correlating method.

Eventidentification. The VMM identifies an incoming packet
for correlation as it identifies a block read completion vitib re-
quested block number. Operating systems commonlgacket ab-

straction to map a network packet to a task for TCP/IP netimgrk

A socket is identified by four-tuple (source IP address, cowort
number, destination IP address, and destination port nnfire
connection-oriented protocols such as TCP, or by two-t(gesti-
nation IP address and destination port number) for cormdess
protocols such as UDP. To identify an incoming packet eyactl
the VMM should also maintain the tuples to correlate an incom
ing packet with a recipient task. The VMM, however, may have
high overheads of memory space and processing time to rimainta
socket-like information, especially when a number of neknamn-
nections are established. For a lightweight correlatioohmaism,
we consider only a destination port number as an identifinatiue

of an incoming packet because it is the most specific infaomat
related to a recipient task.

Correlation. For the posterior correlation, we use a prediction
mechanism by monitoring which task is woken up after thevdeji
of an incoming packet. As stated in Section 3.1, we antieiplaht
an incoming packet is delivered to the first woken task if thisk
is 1/0-bound. By this anticipation, if the first woken taskas
inferred 1/O-bound task, the VMM regards the incoming padke
for 1/0O-bound. To elaborate the prediction, we use histoaged
approach as with the branch prediction scheme [22]. The VMM
uses aportmap, each entry of which maintains the correlation
history for each destination port number; each entry is abitN-
saturating counter, namgubrtmap counter. If an incoming packet
for a destination port number makes the kernel wake up arréde
1/0-bound task, the corresponding portmap counter is merged.
Otherwise, the counter is decremented. When a packet isrmgend
to a VCPU, the VMM partially boosts the VCPU if the most
significant bit of the corresponding portmap counter is set.

Accuracy issues. Since correlation accuracy depends on the
amount of history, a suitable bit-width should be chosermitie
consideration of space overheads; in the case of an N-hittequ
the VMM stores2” prediction history for each port number. Al-
though a 1-bit counter takes up minimal space, it is vulrer&d
miss correlation. In Section 5.2, we show a 2-bit counteedson-
able for both accuracy and space requirement.

A multiple bit counter has another effect to alleviate misse-
lation in case where multiple tasks use one port number@ame
ple, a multitasking TCP server. As described above, onlystirte
tion port number is regarded as a correlation unit, the VMinca
distinguish each connection for multiple tasks using o pam-
ber. For the 1-bit counter, the newly created task using ¢nees
port can invalidate the previously established corretabecause
the new task is not regarded as I/O-bound. A multiple bit, ke t
other hand, retains the established correlation as long@sest
packets for the same port number reach I/O-bound tasks.

When a domain receives multiple packets for different port
numbers at once, the VMM confuses which port number is relate
with the first woken task. To cope with this uncertainty, thiédM
updates portmap only if all incoming packets are destineane
port number before the time slice of the target VCPU. AltHotlgs
approach could defer partial boosting when many packetdifor
ferent port numbers simultaneously reach, more precigeletion
is achieved.

4. Implementation

This section describes the implementation of our scheddimd
inference mechanisms in the Xen VMM. Xen uses a common in-
terface for schedulers so that different schedulers aiity elevel-
oped and adopted. We implement our scheduling-related anech
nisms over the credit scheduler of Xen-3.2.1 throughsk-aware
operation interface. Our current implementation is based on a sin-
gle physical core while assuming a guest domain has a VCPU. We

therefore do not consider task migration between VCPUs gnd s
chronization issues.

4.1 Task Information Management

For the management of task information, each VCPU maintains
a task hash, which containstask_info structure. This structure
stores a task ID, a timestamp, and the degree of belief. Hidba

is the CR3 of a task; in x86, a CR3 indicates the page directay
virtual address space. The timestamp is the last time wheetagk

is inferred as an I/O-bound task. The timestamp is used far Xe
to reclaimtask_info of a task that has not accessed I/O during
a certain period. We do not accurately track the terminatiba
task, which is addressed in Antfarm [14], and therefore oelyhe
periodic reclaiming for tasks that conduct no I/O for sommeeti
For efficiency,task_info is preallocated and is managed in a pool
with a bitmap-based allocator.

4.2 Partial Boosting

Partial boosting is conducted by a task-aware operati@rfate
to the credit scheduler. When an event is pending to a VCRJ, th

VMM checks whether the VCPU is placed in the run queue and has

at least one inferred 1/0-bound task. If so, the VMM detemsin
on partial boosting based on the correlation informatioartigl
boosting is implemented by assigniBgOST priority to the VCPU
regardless of its current priority and by reinserting theP{Cin
the run queue. Since VCPUs with the same priority are scleddul
in a round-robin manner, a boosted VCPU should wait for diyea
boosted ones. The credit of a partially boosted VCPU is raaiad

in the same way that of an ordinary VCPU is debited.

Since the credit scheduler debits the credit from a running
VCPU at a tick time, the CPU consumption of a VCPU cannot
be reflected to its credit if the consumed time is less tharcla ti
granularity. Partial boosting is expected to last shamntkess than
atick and thus can steal the credit of another VCPU. In thgiroal
coarse-grain accounting of the credit scheduler, thesefexces-
sive partial boosting affects fine-grain CPU fairness. Tople-
ment such a problem, we make the VMM account actually con-

IDD IDD Doml

Block

Doml1
Block

Block
native backend frontend

Network
frontend
driver

Network
backend
driver

Network
native
driver

Shared

rant table)
driver driver driver
A L []
7

1D
——_" 7

==

ing packet

Dom1, TCP, 1000
Dom2, UDP, 2000
Dom2, TCP, 1000

Shared memory

update

x Dom1's
portmap

Active \ Dom1's 1
7
\\ recent task list| | VMM
\
Y T1| T3
N
s
v
,

grant table \\
NIC

H/W

(a) Block I/0 (b) Network I/O

Figure 3. Correlation mechanism in Xen I/O architecture

The correlation mechanism for block I/O uses the activetgediie
without additional data structure.

Figure 3(a) shows the operation of block 1/0 and our cori@hat
mechanism. Domainl requests a block read operation to an IDD
Prior to the request, domainl specifies that its buffer caeye
is allowed to be mapped by an IDD in an entry of its shared grant
table; the entry is identified bygrant reference, which is an index
of the table, and entry 1 is used in this example. The IDD firgbsn
the permitted memory to its address space through hypefda
VMM creates the requested mapping and updates the acting gra
table after checking permission. Since the entry of thetgiale
represents a block 1/0 request, the VMM correlates the emitty
a task group, which consists of tasks scheduled in the itispec
window before requesting block 1/0O. This figure shows thatyen
1is related withT1 andT3. At grant mapping time, if eitheT1 or
T3 is an 1/0-bound task, entry 1 is marked as 1/0-bound. When the
IDD unmaps the mapping in response to the I/O completiorigbar
boosting is initiated if the unmapped entry is for an I/O-bdtask.

4.3.2 Network I/O
The correlation for network 1/O is assisted by an IDD because

sumed CPU time to each VCPU. The actual CPU time is acquired Packet information can be readily extracted by a networlkead

by time stamp counter (TSC) of 1A-32; the TSC has the high reso-
lution that is same as CPU clock frequency. For example, dra p
tially boosted VCPU consumes 1 ms and then is descheduted, it
credit is debited by 10, which is calculatedlass x (100/10ms).

4.3 Correlation Mechanism

As described in Section 2.1, Xen shifts the management af-har
ware devices to an IDD instead of direct management of the VMM
The implementation of correlation therefore relies on theration

of an IDD.

4.3.1 Block /O

Xen enables an IDD to temporarily map the foreign memory of
domainU in order to avoid a memory copying overhead for block
1/0. Since an IDD conducts real DMA requests on behalf of a
domainU, the IDD requires the access privilege for the mgmbr
the domainU. A domainU should permit its buffer cache memory
to be mapped by an IDD before requesting block I/0O. This mappi
privilege is managed by usinghared grant table whose entry
contains a permitted domain, the address of buffer cache aan
status flag. The shared grant table is governed by the frdnten
driver of a domainU. The VMM tracks the current status of the
mapping by usingactive grant table, which shadows the shared
grant table and is only accessible in the VMM. When a block
1/0 is finished, an IDD releases the foreign mapping, and then
the VMM frees the corresponding entry in the active grantetab

driver, callednetback. An incoming packet from outside is deliv-
ered to the netback driver through the native driver andipiek-

ing software such as a bridge. When the netback driver fatsvar
the packet, it checks whether the packet is for TCP/IP. Iftlse,
driver records the protocol and the port number of the paakdt
the destination domain ID in the memory shared by the VMM. The
packet header inspection incurs negligible overheadsusecanly

a few memory accesses are required with some offset catmsat
(15 lines of source code). Furthermore, the memory access do
not affect a hardware cache because the VMM copies the egteiv
packets to recipient domains right after the inspectiochB4CPU
requires Nx 8 KB memory for a portmap with N-bit counter; a
TCP/IP packet has a 16-bit destination port number.

Figure 3(b) briefly shows the correlation for network 1/0. &vh
the VMM deschedules an IDD, it inspects incoming packets$ tha
are arrived during the previous time slice of the IDD. For lover-
heads, the limited amount of the port information is recdrdn
IDD records up to 16 entries for one time slice in our curremt i
plementation. In this example, the portmap of domainl isatgu
based on the first woken task of domainl because a packetdor on
destination port number reaches during the time slice ofibie

The IDD-based 1/0 model of Xen may impede our inference
that an incoming packet is likely delivered to the first wokask.
Since an IDD is designated to perform 1/O only, the IDD oftee-p
empts a requesting domain. The preemption of IDD could make a
requesting 1/0-bound task remain as a current task, whicbrbes
the first task in the next time slice of its VCPU. In this ca$aniin-

CDF

1

T Normal IDD-to-Server domain latency (Normal)

TAVS ——

0.8

Latency(ms)

0.6

0 100
Time (s)

04
IDD-to-Server domain latency (TAVS)

i
a
=}

02}

Latency(ms)

0

0 50 100 150

Response time (ms)

(a) Response time

200 250

0 100
Time (s)

(b) Scheduling latency

25

25

20 20 —

15 15~ B

10 10

CPU usage (%)

5 5 F

=y
8

Throughput
Domé 9

CPU usage (%)
Throughput (MB/s)
CPU usage (%)
o = o
8 5 g
Throughput (Mbps)

N
8

S

Base 0 0.06250.125 0.25 05
PBratio

(a) Block

Base 0 006250125 025 05
PBratio

(b) Network

Figure 5. 1/0O throughput for differenPBratios

o] (o] .
1234586 [o] 50

Domain Time (sec)

(c) CPU usage

Avg. response CPU+1/0 1/0
time (ms) Doml1 | Dom2 [Dom3 | Dom4 [Dom5 | Domé6
Normal 69.44 | 7475] 7413] 3.75 4.56 5.07
TAVS 5.09 5.69 5.67 4.95 4.95 3.76

Figure 4. Performance and fairness guarantee for simple interac-
tive workload

coming packet for the 1/0-bound task is pending, the packiébe
delivered to the first task. Then, the portmap counter isriectly
decremented if the first woken task is an unrelated non-Band
task. To address the incorrect updating of a portmap, thienagqr
counter is decremented if neither the first task nor the ficdtem
task is 1/0-bound.

4.4 Fairness Enhancement

We modify the credit scheduler to show better fairness. As ex
plained in Section 2.2, the credit scheduler puts a destbegdu
VCPU into the tail of its priority list. Since the I/O-intels ac-
tivity of a domain makes a boosted IDD frequently preempt the
domain, such a domain is often inserted to the tail of itsrfidist

with much less CPU consumption than other CPU-bound domains
This problem could compromise overall fairness and siggifily
degrade CPU-bound tasks mixed with an I/O-intensive task. F
better fairness, in case where a VCPU is preempted by a luboste
IDD, we make the credit scheduler locate the descheduledU/CP
on the head of its priority list.

5. Evaluation

Our prototype is installed on a 3.00 GHz Intel Pentium D CPU,
equipped with 2 GB RAM. We make our system run on a single
physical core. A network client runs on a separate physia m
chine, an Intel Pentium 4 processor 2.60 GHz with 1.5 GB RAM,;
this machine is connected to the evaluated machine thraudf@
Mbps Ethernet switch. In our evaluation, we assign 5, 20,24ni
PositiveEv, NegativeEv, and BelThreshold, respectivEhe neg-
ative evidence is regarded as a penalty and thus has higligntwe
than the positive evidence. In addition, we limit the degElelief

by the minimum of-100 and by the maximum of 300. IOthreshold
is empirically determined as 0.5 ms.

5.1 1/O Performance

We demonstrate the improvement of I/O performance on a tienso
dated machine with our mechanism in terms of responsivearess
throughput. To show the improvement for the worst case dimtzso
tion scenario, we concurrently run five CPU-bound domairth wi
one domain to be evaluated. The evaluated domain contaths bo
1/0-bound and CPU-bound workloads so that the original dche
uler does not identify the I/O-bound task. We use the domamO

Table 1. Average response time with different workloads

an IDD. Our mechanism is referred to asvs (task-aware VM
scheduling) in all figures.

Figure 4(a) shows the response time of a simple interactive
workload. One domain runs a TCP echo server with a CPU-bound
task, and a remote client repeatedly requests a small epacket
(40 byte) to this server with random think time, which is bean
100 ms and 1000 ms in this experiment. As shown in the CDF
graph, our mechanism significantly improves the respomse liy
partial boosting compared to the normal case. Figure 4(bwsh
the scheduling latency from an IDD to the server domain fdivde
ering an incoming packet. The result of the normal case shiosts
the server domain has up to about 150 ms as maximum latengy; th
latency is resulted from the number of CPU-bound domains<(5)

a maximum time slice (30 ms). In our mechanism, the latency is
close to zero by partial boosting except for the initial mifeg pe-
riod. Figure 4(c) shows CPU usage for each domain duringxhe e
periment. This result demonstrates that our mechanismagtess
the CPU fairness for an interactive workload.

We demonstrate the throughput of block read and network as
well as CPU usage for each domain according to different i&ra
in Figure 5. The base case shows the reference data, which is a
quired by letting all domains be CPU-bound. We SgsBench and
Iperf to measure the throughput of disk and network, respectively
we measure the disk throughput by sequentially reading 832
each of which has the size of 128 KB and the network throughput
by having a remote client transmit the data of 512 MB over TCP
connection. All results are averaged over five runs.

Figure 5 shows the throughput of block read and network is
improved as more partial boosting is allowed. In additiof,UC
fairness among guest domains is guaranteed for all cas#eath
the CPU usage of the IDD increases as the 1/O throughput is
improved because an actual I/O operation is processed iDibe
The credit scheduler allows an I/O-intensive domain to use i
corresponding IDD in a work-conserving manner and accounts
the CPU usage of the IDD by processing 1/O to the IDD itself,
not a requesting domain. In fact, the CPU usage on behalf of
guest domains should be distributed into each requestimguoioto
enhance performance isolation. If an accurate accountietiaod
such as ofSEDF-DC in [12] is implemented in our prototype,
PBratio will be a useful parameter to control the use of thB.ID
The accurate accounting method is beyond the scope of ther pa
and is remained as future work.

We evaluate our system in case where multiple domains have
different workloads, which consist of three mixed domai@® (-
and 1/0-bound), three 1/0-bound domains, and three CPUwbou
domains. Six clients conduct requests and responses itttk

time between 10 ms and 1000 ms. Table 1 shows that the domains

including CPU- and 1/0-bound tasks have much lower respensi
ness than I/O-bound domains in the normal case. Our mechanis
substantially improves the poor responsiveness of the dnike
mains nearly as good as that of I/0O-bound domains.

5.2 Correlation

This section presents the evaluation of our correlationraeisms
for block and network I/O. We evaluate correlation and |/@fqe
mance as changing the inspection window size and the bifweid

a portmap counter. As the metric of the correlati@partial boost-

ing hit ratio (PBHR) is measured by using TSC. PBHR is defined

as:
o, J— Z h
PBHR () = The number of partial boostings 100
where
h— 1 ,ifan I/O-bound task awakes during partial boosting.
— 1 0 ,otherwise.

We instrument our benchmarks to record a timestamp in mem-
ory whenever an 1/0-bound task awakes from blocking 1/Ohia t
experiment, a disk read program records a timestamp rigat af
open andread system calls, and a UDP server records a timestamp
right afterrecvfrom system call. Since TCP requires kernel-level
instrumentation due to control packets suclads we use UDP to
simply measure PBHR. Xen also records a timestamp at the star
and end of partial boosting. We run five CPU-bound domaink wit
an evaluated one.

One domain generates synthetic workloads, which are run-
ning multiple tasks with different CPU consumption betwéth
operations. An 1/0-bound task intensively performs I/Ohwitt
CPU consumption. The others conduct 1/0O with CPU consump-
tion greater than 10threshold. In this experiment, one domas
eight tasks with different CPU consumptions: 0 ms, 1 ms, 2 ms,
5 ms, 10 ms, 30 ms, 100 ms, and 300 ms; a task with 0 ms is an
1/0-bound task. We measure PBHR and the performance of the
1/0-bound task with the PBratio of 0.125. All averaged resate
the 10% trimmed mean of ten runs. In addition, the figuresigeov
PBHR and performance in the case of no correlation, named NC;
no correlation means the VMM patrtially boosts a guest dortran
includes at least one 1/0-bound task whenever an event iqgn
to this domain.

Figure 6 shows PBHR and the throughput of the block 1/O-
bound task for different inspection window sizes. As state8ec-
tion 3.3.1, the inspection window enables our scheduleotsicler
the I/O-bound tasks of which block requests are delayed by th
guest kernel. As the window size increases, therefores fadga-
tive partial boosting is reduced; that is, an I/O-bound taskefits
from more partial boosting and achieves higher performa@ce
the other side, the larger window size is, the higher falsstpe
ratio. In Figure 6, PBHR of the I/O-bound task decreases as th
window size increases; false positive ratio is equal to (IPBHR)

%. Instead, the larger window size achieves the better ¢imout of
the I/O-bound task, since its delayed requests are comigehfa
partial boosting. Because partial boosting is restrigtiaiowed by
PBratio, high false positive ratio rather reduces the ghbiotbosting
chance of the 1/0O-bound task (See the decline of throughmut f
window sizes between five and eight).

To evaluate network 1/O correlation, we use the simple ater
tive workload, which is used in Subsection 5.1; howeverdoan
think time is between 10 ms and 1000 ms to increase intensity.

PBHR = Throughput(KB/s)

100

160
140
120

p——

mE E = =

.

80

i 100

80
60

60

PBHR (%)

40

Throughput (KB/s)

40
20

20

1 2 3 4 5 6 7

Inspection window size

Figure 6. PBHR and throughput of a block read 1/0-bound task
for different inspection window sizes

8 NC

1

0.9
0.8 -

0.7

0.6 -

0.5 -4

CDF

0.4 |

038

0.2

-

1 C
Bit-width of portmap
.

0lg

0

. . . .
150 200 250 350
Response time (ms)

L L
0 50 100 300 400

Figure 7. PBHR and response time of a network 1/0-bound task
for the different bit-widths of a portmap counter

The eight UDP echo servers with the same configuration for the
CPU consumption of the block I/O evaluation individuallynse
the eight clients. Figure 7 shows the response time and PB¥R f
the different bit-widths of a portmap counter. In the casé.difit
counter, PBHR of 64% shows its weakness from miss correlatio
and relatively low responsiveness. On the other side, 2+mt4-

bit counters achieve PBHR of about 90% with the aid of the cor-
relation history. Even though PBHR of 4-bit counter is alslig
higher than that of 2-bit counter, their response times amost
same. This result demonstrates 2-bit counter is the bestecfar
reasonable performance and memory overheads. Althougbrno ¢
relation shows reasonable responsiveness, its PBHR islowary
resulted from exhaustive partial boosting, which is inéffi¢ due

to unproductive domain switches.

5.3 Realistic Workload

We evaluate our mechanism over realistic workloads for tuair
desktop farm and consolidated development machines.alizas
tion is convenient for developing in that developers cankwam
their target environment anywhere with the developing ¢aot
stalled in virtual machine images. As with other experirsgmte
concurrently run five CPU-bound domains with the PBratio of
0.125, the inspection window size of three, and the bit-wiolt
portmap counter of two. Figure 8(a) and Figure 8(b) show &ie r
sponse time of a text editing task with running compilatiom a
web browsing, respectively. The web browsing workload islena
by running web browser with three sites containing sevelash-
animations, which is CPU-intensive. The text editing isriear
out throughssh connection. Our mechanism improves the response
time of text editing with the CPU-bound workloads.

Figure 9(a) shows the execution time and CPU usage of four
different I/O-bound tasksgfep, find, wget, andcp) mixed with
CPU-bound workloads (Xen compilation and file compression)

CDF

1
0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

0 0
0 0.05 0.1 0.15 0.2

Response time (sec)

(a) Developer

Normal
TAVS

Normal
_— TAVS ——

CDF
o
&

0.05 0.1 0.15 0.2

Response time (sec)

(b) Desktop user

0.25

Figure 8. The response time for text editing

1 100
1 90
o 08 — 4 80
£ T
= 17
£ S
é 0.6 - 41 60 E;
> I+
g {50 g
8 o4 w0 B
‘s s) [3)
£
S 4 30
=
0.2 4 20
sle 8|8 gle 8 le
1 10
o o8 - o [8 o| 8 o
grep find wget smb cp
(+compile) (+compile) (+compress) (+compress)
Normal —— IDD =] Dom2-Dom5 ¢

Dom1l ©

(a) Execution time and CPU usage

300
250
200
150
100

The degree of belief

[| . ! i
200 300

Elapsed time (sec)

300 LR
250
200
150
100
50

T LA R R

The degree of belief

2100 L= wtll i Pl i
0 100
Elapsed time (sec)

(b) The degree of belief

T
200

Figure 9. Performance and CPU usage for realistic workloads

cp copies a large number of files from a remasenba server to
the local disk. From the result, we show the performance @f I/
bound tasks is improved without compromising CPU fairnéss.
addition, PBHR is more than 99% for all cases. Figure 9(bjvsho
the degree of belief of tasks for each workload pair; thezumtal
line represents BelThreshold (20). The result shows tleadiégree
of belief well reflects the 1/0-boundness of guest-levek$ag he
results ofwget and samba copy are omitted because they show
similar cut to that off ind.

5.4 Overhead

This section describes overheads for our task-aware sithgdiio
evaluate the overhead for tracking I/O-bound tasks, we QM 4

Network througﬁpurmxw p
4.5 Average CPU throughput——" -
5
a 4
5
g 35 X
£ 3 P
o L
& 25 X
T
E 2 %
o
z 15
1%
05 . . .
0 0.0625 0.125 0.25 05
PBratio

Figure 10. The overall system performance

port information. As a result, there is no degradation ofuvoek
throughput for our mechanism, since port information istkep
the default shared page with the limited number; the defdated
page contains frequently referenced data such as an eveamelh
and therefore is likely in a hardware cache.

We evaluate the overall system performance affected byapart
boosting. Figure 10 shows the network throughput of a domain
and the average CPU throughput of CPU-bound domains for the
same experimental configuration with Figure 5(b). In thisifig
the average CPU throughput of CPU-bound domains decreases a
more partial boosting is allowed to one domain, since theeamed
1/0 makes an IDD consume more CPU and results in more context
switching. However, the degradation of CPU throughput iglém
in comparison with the increased I/O throughput. The ratithe
increased network throughput to the decreased CPU throtghp
about48 : 1 in this evaluation.

6. Related Work

This section compares our work with previous research on VM
scheduling and inference techniques using gray-box krigyele

6.1 VM Scheduling

Performance analysis for VM schedulers has been well caaduc
by Cherkasova and Gupghal. on the Xen VMM. They focused on
the 1/0 performance over the I/O model of Xen using IDD. They
analyzed the 1/O performance of three schedulers: BVT, SBBdF
the credit scheduler [7, 6]. This work shows the 1/O perfanoea
of the schedulers according to different parameters anélasmuis.
Furthermore, they demonstrated that the 1/0 model of Xenemak
CPU allocation and accounting complicated because an IP pr
cesses I/0O on behalf of guest domains. To enhance the agugpunt
mechanism, they proposed SEDF-DC [12], which distribubes t
CPU usage of an IDD into corresponding guest domains thgt tri
ger 1/O operations to the IDD.

Govindanet al. proposed a communication-aware VM schedul-
ing mechanism on consolidated hosting environment [11gifTh
mechanism usesetwork intensity as a scheduling metric for high
throughput of network intensive workloads. In additioneytide-
vised anticipatory scheduling for a network sender thatsimaits
a packet periodically. Their scheduling mechanism ackidigh
performance over specific workloads such as a network iiviens
server or a streaming server. Their heuristic method, heweoes
not tackle the responsiveness of non-intensive intematiork-
loads and the performance of block 1/O tasks.

Ongaroet al. explored the impact of a VM scheduler for various
combinations of scheduling features over multiple gueshalas

tasks in a domain and make them communicate each other byrunning different types of applications [20]. They mainbctised
usinghackbench. The average slowdown for 100 runs is 0.06% and on the operation of the credit scheduler and its enhancerkair

thus shows a negligible tracking overhead. In addition, \&eeh
an IDD send network requests intensively to a domain with ful
CPU utilization to show the overhead for recording and chrerck

enhancement includes fair event channel notification,rpptien
minimization, and VCPU ordering based on remaining crddit.
the evaluation, they experimented on the credit and SED&dsch

ulers according to their enhancement and original feataueh
as boosting. They concluded that a latency-sensitive watkhas
poor responsiveness if the workload is mixed with CPU-baumek
in the same domain.

To cope with a semantic gap in VM scheduling, we proposed

a guest-level priority-based scheduling mechanism inipesvre-
search [17]. This work is based on an intrusive approachahah
guest kernel explicitly informs the VMM of guest-level prittes
of runnable and blocked tasks. In the credit schedulerebase
plementation, the VMM preferentially schedules a guest @om
with the highest guest-level priority if the VCPU of the ddmhas
remaining credit. In contrast to this work, our task-awareeslul-
ing mechanism is non-intrusive by using inference techescand
presents the enhanced correlation mechanisms.

6.2 VMM-level Inference Techniques

Many novel inference techniques monitor guest-level bielaand
achieve better resource allocation. While the use of exptifor-
mation from a guest kernel has the limitations of untrusthier
ness and kernel modification, sophisticated VMM-level iefee
is very useful to enhance resource management transpaigent
eral inference techniques use gray-box knowledge, whiaffas-
mation acquired by monitoring output or exploiting algbnitic
knowledge for operating systems [3].

Joneset al. presented various inference techniques for moni-
toring the buffer cache [15], tracking guest-level task4][land
detecting hidden malicious tasks [16] at the VMM-level. fantn
is a task tracking technique that monitors virtual addrgzsces
switches. In Antfarm, the VMM tracks the creation, switahin
and termination of tasks while it matches an address space id
tifier with a task. By using this tracking technique, they grsed
task-aware anticipatory scheduling, which is a disk 1/Cesttliing
mechanism relying on task-specific information. Furtheenthey
developed a hidden task detection mechanism, called Lgcbgi
using Antfarm. Lycosid detects the existence of hidden crals
tasks on the basis of the task view of the user and that of thi1VM
The task tracking is a crucial technique, since a task is @ iver
portant abstraction of general operating systems.

7. Conclusions

As system virtualization is more prevalent in various paftthe
computing environment, a semantic gap disturbs the efficien

source management of the VMM. The inference technique us-

ing gray-box knowledge from empirical studies of operatiyg-
tems can bridge the semantic gap in that the technique is-tran
parent and can be easily deployed. This paper introducesel no

VM scheduling mechanism based on the I/O-boundness of guest

level tasks by using lightweight inference mechanisms. &yp&
ing task-awareness in VM scheduling, we give intelligercéhe
VMM in favor of 1/0 performance while guaranteeing CPU fair-
ness. Our inference technique for tracking 1/0-boundnesistiae
correlation mechanisms are lightweight and best-effarpfeserv-
ing the economy of the VMM. Our task-aware scheduling iseffe
tive for unpredictable and varying workloads such as virtiesk-
top or cloud computing environments.

Acknowledgments

This work was supported by the Korea Research FoundationtGra
funded by the Korean Government (MOEHRD, Basic Research

Promotion Fund) (KRF-2008-314-D00345).

References

[1] Sun virtual desktop infrastructure softwaiettp: //www.sun.com/
software/vdi/.

[2] Virtual desktop infrastructure (VDI). White paper of Nare.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioraand
control in gray-box systems. roc. SOSP, 2001.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A0,H
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProc. SOSP, 2003.

[5] D. P. Bovet and M. CesatlUnderstanding the Linux Kernel. O'Reilly,
3rd edition, 2005.

[6] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison ofttinee
CPU schedulers in Xer8 GMETRICS Perform. Eval. Rev., 35(2):42—
51, 2007.

[7] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual isdea
than real: Resource allocation challenges in virtual maehiased it
environments. Technical Report HPL-2007-25, February7200

[8] K. Fraser, S. H, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual ma-
chine monitor. InProc. Workshop on OAS'S, 2004.

[9] T. Garfinkel and M. Rosenblum. When virtual is harder thaal:
security challenges in virtual machine based computing@mments.
In Proc. HOTOS 2005.

[10] I. J. Good. Weight of evidence: A brief survey. Rroc. Second
Valencia Int'| Meeting on Bayesian Satistics, 1983.

[11] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Siara-
maniam. Xen and co.: communication-aware CPU scheduling fo
consolidated Xen-based hosting platformsPtoc. VEE, 2007.

[12] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Eirig
performance isolation across virtual machines in Xen. Ptac.
ACM/IFIP/USENIX Middleware Conference, November 2006.

[13] S. T. Joneslmplicit operating system awareness in a virtual machine
monitor. PhD thesis, Madison, WI, USA, 2007. Adviser-Remzi H.
Arpaci-Dusseau.

[14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Bass
Antfarm: Tracking processes in a virtual machine environtndn
Proc. USENIX Annual Technical Conference, 2006.

[15] S. T.Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Bass Geiger:
Monitoring the buffer cache in a virtual machine environmémProc.
ASPLOSXII, 2006.

[16] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Bags VMM-
based hidden process detection and identification usingdigic In
Proc. VEE, 2008.

[17] D. Kim, H. Kim, M. Jeon, E. Seo, and J. Lee. Guest-awaierity-
based virtual machine scheduling for highly consolidatedvesr. In
Proc. Euro-Par, 2008.

[18] R. Love. Linux Kernel Development (2nd Edition) (Novell Press).
Novell Press, 2nd edition, 2005.

[19] M. K. McKusick and G. V. Neville-Neil.
FreeBSD 5.2Queue, 2(7):58-64, 2004.

Thread scheduljnn

Our current prototype only considers the case where a guest[20] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O intwa

domain has one VCPU on a single physical CPU. Thus, we do

not address migration issues for guest-level tasks and \&CPU

The current credit scheduler tends to relocate a VCPU be&twee

physical CPUs mainly focusing on balancing the load of CPE. A
future work, we plan to extend our prototype to support racttie
systems for improving I/O performance based on task-aveaen

machine monitors. I#®roc. VEE, 2008.

[21] M. E. Russinovich, M. E. Russinovich, D. A. Solomon, abdA.
Solomon. Microsoft Windows Internals, Fourth Edition. Microsoft
Press, Redmond, WA, USA, 2004.

[22] J. E. Smith. A study of branch prediction strategies.Pinc. |SCA,
1998.

