
Task-aware Virtual Machine Scheduling for I/O Performance

Hwanju Kim Hyeontaek Lim Jinkyu Jeong Heeseung Jo Joonwon Lee1

Computer Science Department, Korea Advanced Institute of Science and Technology (KAIST)
hjukim@calab.kaist.ac.kr, limh@kaist.ac.kr, {jinkyu,heesn}@calab.kaist.ac.kr, joonwon@skku.edu

Abstract
The use of virtualization is progressively accommodating diverse
and unpredictable workloads as being adopted in virtual desktop
and cloud computing environments. Since a virtual machine moni-
tor lacks knowledge of each virtual machine, the unpredictableness
of workloads makes resource allocation difficult. Particularly, vir-
tual machine scheduling has a critical impact on I/O performance in
cases where the virtual machine monitor is agnostic about the inter-
nal workloads of virtual machines. This paper presents a task-aware
virtual machine scheduling mechanism based on inference tech-
niques using gray-box knowledge. The proposed mechanism in-
fers the I/O-boundness of guest-level tasks and correlatesincoming
events with I/O-bound tasks. With this information, we introduce
partial boosting, which is a priority boosting mechanism with task-
level granularity, so that an I/O-bound task is selectivelyscheduled
to handle its incoming events promptly. Our technique focuses on
improving the performance of I/O-bound tasks within heteroge-
neous workloads by lightweight mechanisms with complete CPU
fairness among virtual machines. All implementation is confined to
the virtualization layer based on the Xen virtual machine monitor
and the credit scheduler. We evaluate our prototype in termsof I/O
performance and CPU fairness over synthetic mixed workloads and
realistic applications.

Categories and Subject Descriptors D.4.1 [OPERATING SYS-
TEMS]: Process Management—Scheduling

General Terms Experimentation, Performance

Keywords Virtualization, Scheduling, Inference, Virtual Ma-
chine, Xen

1. Introduction
As system virtualization has matured rapidly in terms of perfor-
mance, reliability, and administration, the application of virtual-
ization is expanding into diverse parts of the computing environ-
ment. System virtualization allows a large number of machines to
be consolidated in limited physical hardware so that resource uti-
lization and management are efficient. Due to the high performance
hardware and paravirtualization techniques, the degree ofmachine
consolidation has grown considerably. Recently, Sun and VMware

1 Currently at School of ICE, Sungkyunkwan University, Korea

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’09, March 11–13, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

introduce virtual desktop infrastructure [1, 2], which consolidates
virtual desktop images in a server farm. Desktop users can access
their virtual desktop through terminal devices such as a thin client
or a mobile device. The extension of virtualization from server to
desktop environment makes the virtual machine monitor (VMM)
accommodate various and unpredictable workloads.

Since diverse workloads are feasible on consolidated virtual
machines (VMs), the VMM has difficulty in resource allocation
due to a semantic gap with guest operating systems. The semantic
gap [9] is inevitable because different operating systems have their
own sophisticated mechanisms and policies, whereas the VMM
has lightweight components and narrow interfaces. This problem
impedes the efficient allocation of hardware resources in terms of
how much and when the resources are required by each VM. To
bridge the semantic gap, VMM-level inference techniques [13, 15,
14, 16], which estimate the internals of a guest operating system
by monitoring system events, have been proposed with respect to
buffer cache, task tracking, hidden process detection, andso forth.

The unpredictableness of workloads makes CPU allocation
hard, especially with regard to timeliness. Since the VMM lacks
knowledge about existing tasks in each guest operating system,
it has difficulty in considering mixed workloads on VMs. In addi-
tion, the VMM does not track which I/O event is destined for which
blocked tasks. Such a semantic gap can degrade responsiveness, es-
pecially when many VMs are consolidated and their workloadsare
diverse. For example, when a lot of VMs contain both I/O-bound
and CPU-bound workloads, they could have poor I/O responsive-
ness because the VMM cannot timely relate a received event with
an I/O-bound task. If the VMM schedules the destined VM without
considering its internal workloads, unrelated CPU-bound tasks in
the VM could exhaust its allocated CPU; hence, such scheduling
induces poor fairness among guest VMs. Therefore, the VMM re-
quires guest-level task awareness and the correlation between an
incoming event and an I/O-bound task.

This paper presents a task-aware VM scheduling mechanism for
improving the performance of I/O-bound tasks within a VM. Our
main goal is to improve the responsiveness of I/O-bound tasks se-
lectively from CPU-bound workloads with complete CPU fairness.
To identify I/O-bound tasks in mixed workloads, we use gray-box
knowledge based on general characteristics for I/O-bound tasks. By
observing scheduling order and CPU consumption for each task,
the VMM regards a task that is preemptively scheduled in response
to an I/O event and consumes short CPU time as an I/O-bound task.
Furthermore, the VMM considers multiple observations to statisti-
cally reinforce the inference. Our inference technique through event
monitoring and time measurement keeps the VMM lightweight.

To enhance I/O performance, we introduce partial boosting
and correlation mechanisms on the basis of inferred information
for I/O-bound tasks. First, partial boosting is a priority boosting
mechanism with task-level granularity. Partial boosting enables the
VMM to boost the priority of a virtual CPU (VCPU) that has an
inferred I/O-bound task in response to an incoming event. The pri-

ority boosting is only kept up while the inferred I/O-bound task
handles the event. Therefore, partial boosting efficientlyimproves
I/O responsiveness without compromising CPU fairness among
VMs. Second, our correlation mechanisms help the VMM asso-
ciate an incoming event with an I/O-bound task. Based on the cor-
relation information, the VMM initiates partial boosting only when
an incoming event is highly likely to be received by an inferred
I/O-bound task. This mechanism filters ineffective partialboost-
ing that could be conducted in response to an event for non-I/O-
bound tasks. Our correlation mechanisms for block and network
I/O events are best-effort with lightweight inference techniques.

We implement our task-aware VM scheduling mechanism on
the credit scheduler, which is the latest scheduler of the Xen
VMM. Although the scheduling-related features such as partial
boosting are implemented in the credit scheduler, we present com-
mon interfaces for our mechanism to be ported to other potential
schedulers. The inference mechanism for estimating I/O-boundness
and the correlation mechanisms are implemented in the scheduler-
independent part of Xen. Since our mechanism is confined to the
virtualization layer without any modification to guest kernel, var-
ious operating systems can take advantage of the mechanism.In
the evaluation section, we show the I/O performance improve-
ment in terms of responsiveness and throughput in the worst case
scenario. Furthermore, the correlation mechanisms for block and
network I/O are evaluated by using synthetic workloads. Finally,
we demonstrate I/O performance gain for our system on realistic
workloads.

The remainder of this paper is organized as follows: Section2
describes the Xen VMM and the credit scheduler as our implemen-
tation background. Section 3 introduces the design and operation of
the proposed task-aware VM scheduler. Section 4 explains imple-
mentation details of our Xen-based prototype. Section 5 demon-
strates and discusses experimental results for various workloads.
Section 6 compares our mechanism with related work. Finally, Sec-
tion 7 concludes our work and presents a future direction.

2. Background
This section explains the terminology, the I/O model, and the credit
scheduler of the Xen VMM.

2.1 Xen Overview

Xen [4] is an open-source VMM based on a paravirtualization tech-
nique, which achieves higher performance than full virtualization
approaches. The paravirtualization endeavors to minimizevirtual-
ization overheads through an interface, namedhypercall, between a
guest operating system and the VMM by modifying the guest ker-
nel. Xen makes the privileged VM, calleddomain0, in charge of
managing other guest VMs, calleddomainU.

Xen introduces theisolated driver domain (IDD), which con-
ducts real I/O operations to a bare device on behalf of domainUs,
for reliable I/O architecture [8]. This I/O model enhances the re-
liability of an entire system by isolating the faults induced by de-
vice drivers in an IDD. Moreover, an IDD can operate existingde-
vice drivers and multiplexing software such as a network bridge.
This I/O model requires guest domains to use virtual device drivers
for transparent I/O access. A virtual frontend driver in a domainU
communicates with a corresponding virtual backend driver,which
resides in an IDD and forwards delivered I/O requests to a native
device driver.

A frontend driver and a backend driver notify each other of an
I/O event through anevent channel. The event channel mechanism
virtualizes a hardware interrupt. A virtual interrupt is pending in
the corresponding event channel and then is delivered into the
target domain when the domain is scheduled. The latency between

pending and delivered events obviously depends on the underlying
VM scheduling mechanism.

Xen allocates one or more VCPUs to a domain when the do-
main is created. A VCPU contains general information related to
scheduling and event channels because the VCPU is a scheduling
entity. The event channel information in a VCPU is shared by its
owner domain and the VMM through a shared page for efficient
interrupt handling. When a VCPU is scheduled, the paravirtualized
event driver checks whether its event channel has a pending event.
If so, the driver invokes the corresponding interrupt handler routine.
In this manner, a physical interrupt that is delivered in theVMM is
pending in the event channel of an IDD, and the IDD processes
I/O and sends a virtual interrupt to the event channel of the target
domain by using hypercall.

Xen currently enables the domain0 to choose a scheduler among
two schedulers: the simple earliest deadline first (SEDF) scheduler
and the credit scheduler. The SEDF scheduler makes each domainU
specify a required time slice in a certain period; a (slice, period) pair
represents how much CPU time a domain is guaranteed in a period.
The SEDF scheduler preferentially schedules a domain with the
earliest deadline. This scheduler achieves satisfactory quality on
the environment where a domain includes decidable or predictable
workloads such as a streaming server with a constant bit rate. The
credit scheduler is a proportional share scheduler with a load bal-
ancing feature for SMP systems. The virtue of the credit scheduler
is the simplicity of the operation with reasonable fairnessguaran-
tee and performance, whereas the SEDF scheduler requires a well-
tuned parameter configuration.

2.2 Credit Scheduler

The credit scheduler regards a time quantum ascredit, which is
determined by the definedweight for each domain. The credit of
a running VCPU is debited by 100 every tick period (10 ms); all
active VCPUs are given the credit calculated by the weight oftheir
domain every credit period (30 ms). The credit of a VCPU is used to
determine its priority once a credit period. If a VCPU has remaining
credit (credit> 0), its priority isUNDER (−1). Otherwise a VCPU
is givenOVER (−2) priority, which means the VCPU has consumed
more than its allocated credit. All VCPUs with the priority of
UNDER are scheduled before those with the priority ofOVER; a run
queue maintains VCPUs withUNDER followed by those withOVER,
and the scheduler picks a VCPU at the head of the run queue as a
next VCPU. Once a VCPU is scheduled, it receives the time slice
of 30 ms and runs consuming its credit. When the time slice of a
running VCPU expires, the VCPU is descheduled and is put into
the tail of a list that contains VCPUs with the same priority as the
descheduled VCPU. If a running VCPU does not have any runnable
task in spite of time remaining in its time slice, it is blocked and
leaves the run queue.

The credit scheduler allows a VCPU to preempt a running one
to improve the performance of I/O-bound domains by using a
boosting mechanism. If a VCPU has only I/O-bound tasks, it is
usually blocked with slight credit consumption. When an event
is pending to the blocked VCPU, the VMM wakes up the VCPU
and inserts it into the run queue. Since the VCPU waits until
the preceding VCPUs are descheduled, the event delivery canbe
delayed. To achieve low latency, the credit scheduler boosts the
priority of a woken VCPU if its priority isUNDER—the VCPU
has been blocked with remaining credit. The boosting mechanism
assigns the priority ofBOOST (0), the highest priority, to the woken
VCPU and allows it to preempt a running VCPU. The VCPU of an
I/O-bound domain usually retainsUNDER priority because such a
VCPU typically consumes much less than a tick period. Therefore,
I/O-bound domains frequently preempt a running domain and thus
achieve the improved responsiveness and throughput [20].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Response time (ms)

Native Linux(I/O+CPU)
XenoLinux(I/O)

XenoLinux(I/O+CPU)

(a) Response time for three cases

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

C
P

U
 u

sa
ge

 (
%

)

Domain ID

Dom1: intensive I/O + CPU-bound
Dom2~5: CPU-bound

(b) CPU usage for aggressive boost-
ing

Figure 1. Necessity of task-awareness

3. Task-aware VM Scheduling
Although a VCPU-level scheduling mechanism is quite simpleand
supports fairness well, it has limitations due to the semantic gap.
Once the VMM allocates a physical CPU to a VCPU, the VMM
fully relies on the guest kernel scheduler on the VCPU during
the time slice. Hence, the VCPU-level scheduler does not track
the internal tasks of a VCPU. In spite of the simplicity, the lack
of knowledge about the guest-level workloads could lead to I/O
performance degradation, especially for timeliness. An I/O-bound
task that is mixed with heterogeneous workloads cannot reveal
its I/O-boundness to the VMM because the characteristic of each
individual task is unrecognized at the VMM. For example, when
an event is pending to an idle VCPU, which has no runnable taskin
its previous time slice, the credit scheduler preferentially schedules
the VCPU by the boosting mechanism. However, if the VCPU is
not idle, the credit scheduler does not boost the VCPU even though
a corresponding event is pending. An I/O-bound task runningin the
non-idle VCPU does not take advantage of the boosting mechanism
and consequently has low responsiveness.

Figure 1(a) shows the effect on the response time of an inter-
active workload over the credit scheduler in accordance with the
workloads of a domain. We simply measure the response time
while a client in a separate machine repeatedly requests a small
network packet to a server in a domain that is consolidated with
five CPU-bound domains. As shown in the graph, the server witha
CPU-bound task never benefits from the boosting mechanism and
consequently suffers from low responsiveness. The shape ofthe
CDF graph in this case is totally different from that of a native
Linux for the same workload. The response time is presumed to
be degraded as the physical machine consolidates more domains,
most of which consume CPU time. The server without a CPU-
bound task, on the other hand, almost preempts a running domain
without waiting for the other domains with the aid of the boost-
ing mechanism; the improved response time is close to that ofthe
native Linux.

In the VCPU-level scheduler, there is a critical trade-off be-
tween responsiveness and fairness. As a naive approach for bet-
ter responsiveness, we consider aggressive boosting. If the VMM
aggressively boosts a VCPU without considering internal work-
loads whenever a corresponding event arrives, the CPU fairness
could be compromised, whereas the responsiveness is improved.
In Figure 1(b), we show the worst case result of the aggressive
boosting. Domain1 runs a network-intensive workload with aCPU-
bound task, and the other five domains have CPU-bound work-
loads. Whenever an incoming packet is pending to domain1, the ag-
gressive boosting mechanism preemptively schedules the VCPU of
domain1 regardless of its priority and state. Since the VMM guar-
antees a time slice to the scheduled VCPU as long as the VCPU
has runnable tasks, the CPU-bound task in domain1 exhausts the
given time slice after the incoming packet is handled. Therefore,

the intensive I/O of domain1 makes the other domains starve while
significantly compromising fairness.

To achieve both low I/O latency and fairness of CPU allocation,
the VMM needs to elaborate the boosting mechanism with knowl-
edge about the characteristics of guest-level tasks. Our main goal
is to boost a VCPU when a pending event is destined for an I/O-
bound task in the VCPU while guaranteeing overall CPU fairness.
This section describes tracking I/O-bound tasks, partial boosting,
and correlation mechanisms.

3.1 Tracking I/O-bound Tasks

To distinguish I/O-bound tasks within the mixed workloads,the
VMM should track tasks in domains at the virtualization layer. As
an alternative approach, a guest kernel scheduler can cooperatively
inform the VMM of the information about I/O-bound tasks. This
approach, however, requires the modification of the guest kernel
and assumes that all domains are trusted. To pursue a non-intrusive
approach, we use the previously proposed method to track tasks
at the virtualization layer by monitoring the access to the MMU
hardware [14]. In MMU-enabled operating systems, a task hasa
private virtual address space provided by the paging facility of
the MMU in the protected mode. A guest operating system should
access the MMU when switching tasks by its scheduler. The VMM
can capture the task switching event because the VMM virtualizes
the MMU hardware.

The VMM uses gray-box knowledge to infer the I/O-boundness
of guest-level tasks by observing low-level interactions between
the guest kernel and hardware. The VMM controls I/O operations
through event channels and monitors how tasks are scheduledby
a kernel scheduler. Based on the information acquired by moni-
toring such events, the following general gray-box criteria can be
assumed.

1. The kernel policy for I/O-bound tasks: A priority-based pre-
emptive scheduler, which is prevalent in commodity operating
systems, preferentially schedules an I/O-bound task when acor-
responding I/O event occurs for low latency [5, 21, 19].

2. The characteristic of I/O-bound tasks: An I/O-bound task
typically consumes little CPU time, since its execution time is
dominated by the wait time for an I/O event [18].

The first inference relies on the kernel policy by regarding a
task that is preemptively scheduled in response to an event as an
I/O-bound task. In order to firmly characterize its I/O-boundness,
the VMM also considers the CPU consumption of the inferred I/O-
bound task based on the second criterion. The short CPU consump-
tion of an I/O-bound task is a crucial characteristic to overcome
the trade-off between responsiveness and fairness. A task with the
two characteristics can selectively achieve high responsiveness in
its VCPU without compromising overall CPU fairness among VC-
PUs by partial boosting, which is detailed in next section.

By checking the two criteria, we classify observations of
scheduling events into three disjoint classes:positive evidence, neg-
ative evidence, andambiguity. The observation of a task is positive
evidence if the observation supports the task being I/O-bound. If
the observation indicates that the task is not I/O-bound, itbelongs
to the negative evidence class. Ambiguity means that the observa-
tion cannot help the VMM infer I/O-boundness. Figure 2 showsan
example of task scheduling during the time slice of a VCPU after
an event is pending. We defineIOthreshold to determine the short
CPU consumption; 0.5 ms is used in this example. After the VCPU
with a pending event is scheduled,T2 immediately preemptsT1
and runs for less CPU time thanIOthreshold. Since multiple tasks
could wait for the event, we also considerT3, which is consecu-
tively scheduled afterT2 with short CPU consumption. Hence, the
observations ofT2 andT3 are positive evidence. On the other hand,

T1 T2 T3 T4 T5 T6

VCPU

scheduling
VCPU

descheduling

event pending

t
1

t
2

t
3

IOthreshold = 0.5ms

(t0, t1, t2, t3, t4, t5, t6) = (0, 0.1, 0.3, 0.5, 2.5, 2.8, 5.5) ms

t
0

t
4

t
5

t
6

Figure 2. Inference for I/O-bound tasks

T4 andT6 have negative evidence because they satisfy neither of
our two criteria. We regard the observation ofT1 as ambiguity in
spite of short CPU consumption, since the CPU time is likely from
the immediate preemption ofT2. T5 has short CPU consumption,
but is scheduled after a task with long CPU time. Due to the case
where an I/O-bound task has temporarily low priority in thistime
slice, we also regard the case ofT5 as ambiguity.

Then, the VMM considers multiple observations for reliablein-
ference. Although the above gray-box knowledge explains most ac-
tivities of the task scheduler of a guest kernel, there are anomalies
that violate the gray-box knowledge. For example, an I/O-bound
task may show an exceptionally long CPU time when the operat-
ing system interrupts the execution of the task and processes in-
ternal data without switching the virtual address space; inthe case
of Linux, a kernel thread uses the address space of the previously
descheduled task to avoid address space switching. On the other
hand, a CPU-bound task may have a short CPU time when the task
is preempted by the scheduling policy of its kernel. To our obser-
vation, these anomalies are rare but not negligible. We therefore
relieve this uncertainty by adopting a statistical approach.

The VMM maintains thedegree of belief on the I/O-boundness
for each task. The degree of belief for a task is a variable that
represents how certain the VMM is that the task is I/O-bound.
The degree of belief for a task is initially zero, which meansthe
VMM has no bias for the I/O-boundness of the task. Every time
the VMM observes positive evidence, the VMM addsPositiveEv
to the degree of belief of the descheduled task. For the negative
evidence, the VMM subtractsNegativeEv from the degree of belief.
We simply ignore ambiguity because it does not help determining
I/O-boundness. The VMM assumes that a task is I/O-bound onlyif
its degree of belief is larger thanBelThreshold. Finally, we restrict
the degree of belief for each task to be in a certain range in order to
allow the VMM to quickly adapt the degree of belief to the current
I/O characteristic of the task.

The degree of belief and the evidence are concepts of statis-
tical inference techniques such as a Bayesian inference. Additive
evidence can be represented as log odds, which is the weight of ev-
idence [10]. For more intelligent inference, the VMM can dynam-
ically change PositiveEv and NegativeEv by learning workloads
on a VM. The learning technique, however, is somewhat expen-
sive for the VMM, which is a performance-critical system. More
importantly, the VMM cannot exactly identify the operationof a
guest kernel, and gray-box knowledge has limitations for intelligent
learning. Therefore, we use static parameters in our current imple-
mentation and evaluation. The use of dynamic parameters by learn-
ing efficiently and static parameters by deciding empirically are
challenging problems to enhance the task-awareness of the VMM.

3.2 Partial Boosting

Based on inferred information for I/O-bound tasks, we devise a
partial boosting mechanism to improve I/O responsiveness while
keeping CPU fairness. As described in Section 3, an aggressive
boosting could compromise the fairness. To improve I/O respon-
siveness with fair CPU allocation, we want only I/O-bound tasks
to preempt a running VCPU in response to an incoming event for
immediate I/O processing and yield CPU to another VCPU. When
an event is pending for a VCPU, the VMM initiates partial boosting

for the VCPU regardless of its priority if the VCPU has at least one
inferred I/O-bound task. A partially boosted VCPU can preempt a
running VCPU and handle the pending event. The VMM revokes
CPU from the partially boosted VCPU when the guest operating
system schedules a task that is not inferred as I/O-bound. The pri-
ority of the descheduled VCPU is reassigned by the original policy
of the scheduler, and then the VCPU is inserted into the run queue
based on the returned priority.

When an I/O-bound task that is mixed with CPU-bound tasks
intensively conducts I/O operations, its VCPU is partiallyboosted
very frequently. Since partial boosting is conducted regardless of
the state and priority of a VCPU, unrestricted partial boosting
causes excessive preemptions while repeatedly interrupting other
VCPUs. Moreover, a frequently boosted VCPU can greedily use
shared I/O resources. To relieve this problem, we definePBratio
to restrict uncontrolled partial boosting. PBratio is partial boosting
allowance, which is maintained for each VCPU and is defined as:

PBratio =
Allowed CPU usage for partial boosting

Total CPU usage

PBratio means the CPU fraction that is allowed for partial boosting
in the total CPU usage of a VCPU. Both total CPU usage and the
usage by partial boosting are periodically reset to zero in order to
consider a recent tendency. With low PBratio, only an interactive
application, which is not I/O-intensive, has the high quality of re-
sponsiveness by partial boosting. On the other hand, high PBratio
makes an I/O-intensive task achieve high throughput although its
domain uses more I/O resources. If PBratio is zero, our scheduler
runs in the same as the original scheduling mechanism. The evalu-
ation of PBratio is presented in Section 5.1.

Although ideal partial boosting lasts a short time near IOthresh-
old, there are some cases where the duration of partial boosting is
prolonged. First, partial boosting can occur in response toan I/O
event that is handled in kernel only and is not delivered to any task.
For example, an ARP request packet is handled in the kernel and
does not wake up any task. In this case, partial boosting is pro-
longed until the boosted VCPU schedules a non-I/O-bound task
or exhausts its time slice. For the worst case, a CPU-bound task
uses up the entire time slice of the boosted VCPU. Second, an in-
ferred I/O-bound task may start consuming CPU right after partial
boosting. The effect of such varying workloads can be relieved by
assigning a relatively larger value to NegativeEv than PositiveEv.
Furthermore, the VMM can forcibly revoke CPU from a VCPU
that keeps partial boosting for some time. This mechanism, how-
ever, can incur overheads for managing an individual timer for each
partial boosting. Without the need of maintaining additional timers,
we make the VMM restrict the duration of one partial boostingat
a tick granularity. Moreover, the prolonged partial boosting can be
significantly alleviated by our correlation mechanism described in
the next subsection.

3.3 Correlation Mechanisms

Partial boosting based on only the I/O-boundness of tasks has the
limitations due to the lack of correlation between an event and a
task. Partial boosting could be initiated in response to an event
that is destined for a non-I/O-bound task without the correlation in-
formation. Since the partial boosting mechanism revokes the CPU
from a boosted VCPU as soon as the non-I/O-bound task is sched-
uled, such partial boosting is meaningless while incurringunnec-
essary preemption. Similarly, an event to be handled by the kernel
only may cause useless prolonged partial boosting. The correla-
tion mechanism therefore is essential for effective partial boosting
in that the VMM partially boosts a VCPU only if an I/O-bound
task in the VCPU is likely to receive an incoming event. We de-
vise correlation mechanisms for two representative I/O devices: a
block device and a network device. We consider only block read

and network reception events, to which users are latency-sensitive.
The main objective of our correlation mechanisms is to determine
whether a pending event is destined for an I/O-bound task. The cor-
relation mechanism addresses event identification, correlation, and
accuracy issues.

3.3.1 Block I/O

The correlation for block I/O is relatively simple in that the event
of block read completion is paired with its request event.

Event identification. In the case of block read I/O, a guest
kernel explicitly sends a block read request to a block device driver.
The device driver then requests a DMA operation to a block device.
When the requested block is transferred to the memory via DMA,
the block device generates an interrupt that notifies the kernel
of an I/O completion. Due to the request-response procedureof
block read I/O, a read I/O completion event can be identified by a
requested block number.

Correlation. As a simple method, the VMM correlates a re-
quested block I/O with the task running at the request time. Ac-
curate correlation, however, is challenging because an actual block
request can be delayed from a user request by the status of a request
queue and the policy of a kernel I/O scheduler. Jones [13] proposes
a more accurate correlation than the simple method by exploiting
that operating systems typically copy contents in the buffer cache
into a user buffer. In spite of better correlation, this technique incurs
overheads for maintaining inverse memory mapping and handling
intentional page faults.

In our mechanism, we are interested in whether a block read I/O
is requested from an I/O-bound task. In order to consider a delayed
block request, the VMM inspects not only a current task, but also
previously scheduled tasks at a request time. The VMM regards a
block request as sent by an I/O-bound task if at least one inferred
I/O-bound task is insideinspection window at the request time.

For example, an I/O-bound taskT1 and a non-I/O-bound taskT2
request the 100th block and the 200th block, respectively, and the
inspection window size is two. The two requests are insertedin the
request queue of a block device driver. If the block device driver
handles these requests whenT2 is running, the VMM inspects
T1 and T2 within the inspection window. SinceT1 is an I/O-
bound task, the requests for the 100th and the 200th blocks are
considered as sent by an I/O-bound task. When a read completion
event for the 100th block is pending, the VMM partially boosts the
corresponding VCPU so thatT1 promptly handles the event.

Accuracy issues. This window-based correlation is a best-
effort approach because it could remain some false positivepartial
boosting. When a read completion event for the 200th block is
pending, the VMM also boosts this VCPU even thoughT2, which is
supposed to receive the pending event, is not I/O-bound. Such false
partial boosting, however, rarely occurs, since a task thatis inferred
as non-I/O-bound is unlikely to conduct I/O requests frequently. In
the case of the Xen I/O model, furthermore, a batch of I/O requests
from a guest domain alleviates the false positive partial boosting
because an IDD also batches some responses for simultaneously
requested I/O to improve throughput.

3.3.2 Network I/O

The correlation for network I/O is more complicated than that
for block I/O because a network packet arrives asynchronously,
whereas a block operation is only conducted in response to anex-
plicit request from the kernel. Due to this characteristic,the VMM
correlates the event of an incoming packet with a task through a
posterior correlating method.

Event identification. The VMM identifies an incoming packet
for correlation as it identifies a block read completion withthe re-
quested block number. Operating systems commonly usesocket ab-

straction to map a network packet to a task for TCP/IP networking.
A socket is identified by four-tuple (source IP address, source port
number, destination IP address, and destination port number) for
connection-oriented protocols such as TCP, or by two-tuple(desti-
nation IP address and destination port number) for connectionless
protocols such as UDP. To identify an incoming packet exactly,
the VMM should also maintain the tuples to correlate an incom-
ing packet with a recipient task. The VMM, however, may have
high overheads of memory space and processing time to maintain
socket-like information, especially when a number of network con-
nections are established. For a lightweight correlation mechanism,
we consider only a destination port number as an identification clue
of an incoming packet because it is the most specific information
related to a recipient task.

Correlation. For the posterior correlation, we use a prediction
mechanism by monitoring which task is woken up after the delivery
of an incoming packet. As stated in Section 3.1, we anticipate that
an incoming packet is delivered to the first woken task if thistask
is I/O-bound. By this anticipation, if the first woken task isan
inferred I/O-bound task, the VMM regards the incoming packet is
for I/O-bound. To elaborate the prediction, we use history-based
approach as with the branch prediction scheme [22]. The VMM
uses aportmap, each entry of which maintains the correlation
history for each destination port number; each entry is an N-bit
saturating counter, namedportmap counter. If an incoming packet
for a destination port number makes the kernel wake up an inferred
I/O-bound task, the corresponding portmap counter is incremented.
Otherwise, the counter is decremented. When a packet is pending
to a VCPU, the VMM partially boosts the VCPU if the most
significant bit of the corresponding portmap counter is set.

Accuracy issues. Since correlation accuracy depends on the
amount of history, a suitable bit-width should be chosen with the
consideration of space overheads; in the case of an N-bit counter,
the VMM stores2N prediction history for each port number. Al-
though a 1-bit counter takes up minimal space, it is vulnerable to
miss correlation. In Section 5.2, we show a 2-bit counter is reason-
able for both accuracy and space requirement.

A multiple bit counter has another effect to alleviate miss corre-
lation in case where multiple tasks use one port number, for exam-
ple, a multitasking TCP server. As described above, only a destina-
tion port number is regarded as a correlation unit, the VMM cannot
distinguish each connection for multiple tasks using one port num-
ber. For the 1-bit counter, the newly created task using the server
port can invalidate the previously established correlation because
the new task is not regarded as I/O-bound. A multiple bit, on the
other hand, retains the established correlation as long as request
packets for the same port number reach I/O-bound tasks.

When a domain receives multiple packets for different port
numbers at once, the VMM confuses which port number is related
with the first woken task. To cope with this uncertainty, the VMM
updates portmap only if all incoming packets are destined for one
port number before the time slice of the target VCPU. Although this
approach could defer partial boosting when many packets fordif-
ferent port numbers simultaneously reach, more precise correlation
is achieved.

4. Implementation
This section describes the implementation of our scheduling and
inference mechanisms in the Xen VMM. Xen uses a common in-
terface for schedulers so that different schedulers are easily devel-
oped and adopted. We implement our scheduling-related mecha-
nisms over the credit scheduler of Xen-3.2.1 through atask-aware
operation interface. Our current implementation is based on a sin-
gle physical core while assuming a guest domain has a VCPU. We

therefore do not consider task migration between VCPUs and syn-
chronization issues.

4.1 Task Information Management

For the management of task information, each VCPU maintains
a task hash, which containstask info structure. This structure
stores a task ID, a timestamp, and the degree of belief. The task ID
is the CR3 of a task; in x86, a CR3 indicates the page directoryof a
virtual address space. The timestamp is the last time when the task
is inferred as an I/O-bound task. The timestamp is used for Xen
to reclaimtask info of a task that has not accessed I/O during
a certain period. We do not accurately track the terminationof a
task, which is addressed in Antfarm [14], and therefore relyon the
periodic reclaiming for tasks that conduct no I/O for some time.
For efficiency,task info is preallocated and is managed in a pool
with a bitmap-based allocator.

4.2 Partial Boosting

Partial boosting is conducted by a task-aware operation interface
to the credit scheduler. When an event is pending to a VCPU, the
VMM checks whether the VCPU is placed in the run queue and has
at least one inferred I/O-bound task. If so, the VMM determines
on partial boosting based on the correlation information. Partial
boosting is implemented by assigningBOOST priority to the VCPU
regardless of its current priority and by reinserting the VCPU in
the run queue. Since VCPUs with the same priority are scheduled
in a round-robin manner, a boosted VCPU should wait for already
boosted ones. The credit of a partially boosted VCPU is maintained
in the same way that of an ordinary VCPU is debited.

Since the credit scheduler debits the credit from a running
VCPU at a tick time, the CPU consumption of a VCPU cannot
be reflected to its credit if the consumed time is less than a tick
granularity. Partial boosting is expected to last short-term less than
a tick and thus can steal the credit of another VCPU. In the original
coarse-grain accounting of the credit scheduler, therefore, exces-
sive partial boosting affects fine-grain CPU fairness. To comple-
ment such a problem, we make the VMM account actually con-
sumed CPU time to each VCPU. The actual CPU time is acquired
by time stamp counter (TSC) of IA-32; the TSC has the high reso-
lution that is same as CPU clock frequency. For example, if a par-
tially boosted VCPU consumes 1 ms and then is descheduled, its
credit is debited by 10, which is calculated as1ms× (100/10ms).

4.3 Correlation Mechanism

As described in Section 2.1, Xen shifts the management of hard-
ware devices to an IDD instead of direct management of the VMM.
The implementation of correlation therefore relies on the operation
of an IDD.

4.3.1 Block I/O

Xen enables an IDD to temporarily map the foreign memory of
domainU in order to avoid a memory copying overhead for block
I/O. Since an IDD conducts real DMA requests on behalf of a
domainU, the IDD requires the access privilege for the memory of
the domainU. A domainU should permit its buffer cache memory
to be mapped by an IDD before requesting block I/O. This mapping
privilege is managed by usingshared grant table whose entry
contains a permitted domain, the address of buffer cache, and a
status flag. The shared grant table is governed by the frontend
driver of a domainU. The VMM tracks the current status of the
mapping by usingactive grant table, which shadows the shared
grant table and is only accessible in the VMM. When a block
I/O is finished, an IDD releases the foreign mapping, and then
the VMM frees the corresponding entry in the active grant table.

Block

backend

driver

Block

frontend

driver

Disk

Block

native

driver

IDD Dom1

VMM

H/W

Machine memory

1

Active

grant table
Dom1's

recent task list

1

Shared

grant table

T1 T3

(a) Block I/O

Network

backend

driver

Network

frontend

driver

Network

native

driver

IDD Dom1

VMM

H/W
NIC

Dom1, TCP, 1000

Dom2, UDP, 2000

Dom2, TCP, 1000

Incoming packet

information

Dom1's
portmap

Shared memory
update

(b) Network I/O

Figure 3. Correlation mechanism in Xen I/O architecture

The correlation mechanism for block I/O uses the active grant table
without additional data structure.

Figure 3(a) shows the operation of block I/O and our correlation
mechanism. Domain1 requests a block read operation to an IDD.
Prior to the request, domain1 specifies that its buffer cachepage
is allowed to be mapped by an IDD in an entry of its shared grant
table; the entry is identified by agrant reference, which is an index
of the table, and entry 1 is used in this example. The IDD first maps
the permitted memory to its address space through hypercall. The
VMM creates the requested mapping and updates the active grant
table after checking permission. Since the entry of the grant table
represents a block I/O request, the VMM correlates the entrywith
a task group, which consists of tasks scheduled in the inspection
window before requesting block I/O. This figure shows that entry
1 is related withT1 andT3. At grant mapping time, if eitherT1 or
T3 is an I/O-bound task, entry 1 is marked as I/O-bound. When the
IDD unmaps the mapping in response to the I/O completion, partial
boosting is initiated if the unmapped entry is for an I/O-bound task.

4.3.2 Network I/O

The correlation for network I/O is assisted by an IDD because
packet information can be readily extracted by a network backend
driver, callednetback. An incoming packet from outside is deliv-
ered to the netback driver through the native driver and multiplex-
ing software such as a bridge. When the netback driver forwards
the packet, it checks whether the packet is for TCP/IP. If so,the
driver records the protocol and the port number of the packetand
the destination domain ID in the memory shared by the VMM. The
packet header inspection incurs negligible overheads because only
a few memory accesses are required with some offset calculations
(15 lines of source code). Furthermore, the memory access does
not affect a hardware cache because the VMM copies the received
packets to recipient domains right after the inspection. Each VCPU
requires N× 8 KB memory for a portmap with N-bit counter; a
TCP/IP packet has a 16-bit destination port number.

Figure 3(b) briefly shows the correlation for network I/O. When
the VMM deschedules an IDD, it inspects incoming packets that
are arrived during the previous time slice of the IDD. For lowover-
heads, the limited amount of the port information is recorded; an
IDD records up to 16 entries for one time slice in our current im-
plementation. In this example, the portmap of domain1 is updated
based on the first woken task of domain1 because a packet for one
destination port number reaches during the time slice of theIDD.

The IDD-based I/O model of Xen may impede our inference
that an incoming packet is likely delivered to the first wokentask.
Since an IDD is designated to perform I/O only, the IDD often pre-
empts a requesting domain. The preemption of IDD could make a
requesting I/O-bound task remain as a current task, which becomes
the first task in the next time slice of its VCPU. In this case, if an in-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Response time (ms)

Normal
TAVS

(a) Response time

 0

 50

 100

 150

 0 50 100 150

L
a

te
n

cy
(m

s)

Time (s)

IDD-to-Server domain latency (Normal)

 0

 50

 100

 150

 0 50 100 150
L

a
te

n
cy

(m
s)

Time (s)

IDD-to-Server domain latency (TAVS)

(b) Scheduling latency

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6

C
PU

 u
sa

ge
 (%

)

Domain

 0

 5

 10

 15

 20

 25

 0 50 100 150

Time (sec)

Dom1 (server)
Dom2
Dom3
Dom4
Dom5
Dom6

(c) CPU usage

Figure 4. Performance and fairness guarantee for simple interac-
tive workload

coming packet for the I/O-bound task is pending, the packet will be
delivered to the first task. Then, the portmap counter is incorrectly
decremented if the first woken task is an unrelated non-I/O-bound
task. To address the incorrect updating of a portmap, the portmap
counter is decremented if neither the first task nor the first woken
task is I/O-bound.

4.4 Fairness Enhancement

We modify the credit scheduler to show better fairness. As ex-
plained in Section 2.2, the credit scheduler puts a descheduled
VCPU into the tail of its priority list. Since the I/O-intensive ac-
tivity of a domain makes a boosted IDD frequently preempt the
domain, such a domain is often inserted to the tail of its priority list
with much less CPU consumption than other CPU-bound domains.
This problem could compromise overall fairness and significantly
degrade CPU-bound tasks mixed with an I/O-intensive task. For
better fairness, in case where a VCPU is preempted by a boosted
IDD, we make the credit scheduler locate the descheduled VCPU
on the head of its priority list.

5. Evaluation
Our prototype is installed on a 3.00 GHz Intel Pentium D CPU,
equipped with 2 GB RAM. We make our system run on a single
physical core. A network client runs on a separate physical ma-
chine, an Intel Pentium 4 processor 2.60 GHz with 1.5 GB RAM;
this machine is connected to the evaluated machine through an 100
Mbps Ethernet switch. In our evaluation, we assign 5, 20, and20 to
PositiveEv, NegativeEv, and BelThreshold, respectively.The neg-
ative evidence is regarded as a penalty and thus has higher weight
than the positive evidence. In addition, we limit the degreeof belief
by the minimum of−100 and by the maximum of 300. IOthreshold
is empirically determined as 0.5 ms.

5.1 I/O Performance

We demonstrate the improvement of I/O performance on a consoli-
dated machine with our mechanism in terms of responsivenessand
throughput. To show the improvement for the worst case consolida-
tion scenario, we concurrently run five CPU-bound domains with
one domain to be evaluated. The evaluated domain contains both
I/O-bound and CPU-bound workloads so that the original sched-
uler does not identify the I/O-bound task. We use the domain0as

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

Base 0 0.0625 0.125 0.25 0.5
 0

 5

 10

 15

 20

 25

C
P

U
 u

s
a

g
e

 (
%

)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

PBratio

IDD
Dom1(I/O)
Dom2
Dom3
Dom4
Dom5
Dom6
Throughput

(a) Block

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

Base 0 0.0625 0.125 0.25 0.5
 0

 10

 20

 30

 40

 50

 60

C
P

U
 u

s
a

g
e

 (
%

)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

PBratio

(b) Network

Figure 5. I/O throughput for differentPBratios

Avg. response CPU + I/O I/O
time (ms) Dom1 Dom2 Dom3 Dom4 Dom5 Dom6

Normal 69.44 74.75 74.13 3.75 4.56 5.07
TAVS 5.09 5.69 5.67 4.95 4.95 3.76

Table 1. Average response time with different workloads

an IDD. Our mechanism is referred to asTAVS (task-aware VM
scheduling) in all figures.

Figure 4(a) shows the response time of a simple interactive
workload. One domain runs a TCP echo server with a CPU-bound
task, and a remote client repeatedly requests a small network packet
(40 byte) to this server with random think time, which is between
100 ms and 1000 ms in this experiment. As shown in the CDF
graph, our mechanism significantly improves the response time by
partial boosting compared to the normal case. Figure 4(b) shows
the scheduling latency from an IDD to the server domain for deliv-
ering an incoming packet. The result of the normal case showsthat
the server domain has up to about 150 ms as maximum latency; this
latency is resulted from the number of CPU-bound domains (5)×

a maximum time slice (30 ms). In our mechanism, the latency is
close to zero by partial boosting except for the initial inferring pe-
riod. Figure 4(c) shows CPU usage for each domain during the ex-
periment. This result demonstrates that our mechanism guarantees
the CPU fairness for an interactive workload.

We demonstrate the throughput of block read and network as
well as CPU usage for each domain according to different PBratios
in Figure 5. The base case shows the reference data, which is ac-
quired by letting all domains be CPU-bound. We useSysBench and
Iperf to measure the throughput of disk and network, respectively;
we measure the disk throughput by sequentially reading 8192files,
each of which has the size of 128 KB and the network throughput
by having a remote client transmit the data of 512 MB over TCP
connection. All results are averaged over five runs.

Figure 5 shows the throughput of block read and network is
improved as more partial boosting is allowed. In addition, CPU
fairness among guest domains is guaranteed for all cases. Instead,
the CPU usage of the IDD increases as the I/O throughput is
improved because an actual I/O operation is processed in theIDD.
The credit scheduler allows an I/O-intensive domain to use its
corresponding IDD in a work-conserving manner and accounts
the CPU usage of the IDD by processing I/O to the IDD itself,
not a requesting domain. In fact, the CPU usage on behalf of
guest domains should be distributed into each requesting domain to
enhance performance isolation. If an accurate accounting method
such as ofSEDF-DC in [12] is implemented in our prototype,
PBratio will be a useful parameter to control the use of the IDD.
The accurate accounting method is beyond the scope of this paper
and is remained as future work.

We evaluate our system in case where multiple domains have
different workloads, which consist of three mixed domains (CPU-
and I/O-bound), three I/O-bound domains, and three CPU-bound
domains. Six clients conduct requests and responses with the think
time between 10 ms and 1000 ms. Table 1 shows that the domains
including CPU- and I/O-bound tasks have much lower responsive-
ness than I/O-bound domains in the normal case. Our mechanism
substantially improves the poor responsiveness of the mixed do-
mains nearly as good as that of I/O-bound domains.

5.2 Correlation

This section presents the evaluation of our correlation mechanisms
for block and network I/O. We evaluate correlation and I/O perfor-
mance as changing the inspection window size and the bit-width of
a portmap counter. As the metric of the correlation,a partial boost-
ing hit ratio (PBHR) is measured by using TSC. PBHR is defined
as:

PBHR (%) =

∑

h

The number of partial boostings
× 100

where

h =

{

1 , if an I/O-bound task awakes during partial boosting.
0 , otherwise.

We instrument our benchmarks to record a timestamp in mem-
ory whenever an I/O-bound task awakes from blocking I/O; in this
experiment, a disk read program records a timestamp right after
open andread system calls, and a UDP server records a timestamp
right after recvfrom system call. Since TCP requires kernel-level
instrumentation due to control packets such asack, we use UDP to
simply measure PBHR. Xen also records a timestamp at the start
and end of partial boosting. We run five CPU-bound domains with
an evaluated one.

One domain generates synthetic workloads, which are run-
ning multiple tasks with different CPU consumption betweenI/O
operations. An I/O-bound task intensively performs I/O without
CPU consumption. The others conduct I/O with CPU consump-
tion greater than IOthreshold. In this experiment, one domain runs
eight tasks with different CPU consumptions: 0 ms, 1 ms, 2 ms,
5 ms, 10 ms, 30 ms, 100 ms, and 300 ms; a task with 0 ms is an
I/O-bound task. We measure PBHR and the performance of the
I/O-bound task with the PBratio of 0.125. All averaged results are
the 10% trimmed mean of ten runs. In addition, the figures provide
PBHR and performance in the case of no correlation, named NC;
no correlation means the VMM partially boosts a guest domainthat
includes at least one I/O-bound task whenever an event is pending
to this domain.

Figure 6 shows PBHR and the throughput of the block I/O-
bound task for different inspection window sizes. As statedin Sec-
tion 3.3.1, the inspection window enables our scheduler to consider
the I/O-bound tasks of which block requests are delayed by the
guest kernel. As the window size increases, therefore, false nega-
tive partial boosting is reduced; that is, an I/O-bound taskbenefits
from more partial boosting and achieves higher performance. On
the other side, the larger window size is, the higher false positive
ratio. In Figure 6, PBHR of the I/O-bound task decreases as the
window size increases; false positive ratio is equal to (100- PBHR)
%. Instead, the larger window size achieves the better throughput of
the I/O-bound task, since its delayed requests are compensated for
partial boosting. Because partial boosting is restrictively allowed by
PBratio, high false positive ratio rather reduces the partial boosting
chance of the I/O-bound task (See the decline of throughput for
window sizes between five and eight).

To evaluate network I/O correlation, we use the simple interac-
tive workload, which is used in Subsection 5.1; however, random
think time is between 10 ms and 1000 ms to increase intensity.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 NC
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
B

H
R

 (
%

)

T
hr

ou
gh

pu
t (

K
B

/s
)

Inspection window size

PBHR Throughput(KB/s)

Figure 6. PBHR and throughput of a block read I/O-bound task
for different inspection window sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400
C

D
F

Response time (ms)

1-bit
2-bit
4-bit
NC

 0

 20

 40

 60

 80

 100

1 2 4 NC

P
B

R
H

 (%
)

Bit-width of portmap

Figure 7. PBHR and response time of a network I/O-bound task
for the different bit-widths of a portmap counter

The eight UDP echo servers with the same configuration for the
CPU consumption of the block I/O evaluation individually serve
the eight clients. Figure 7 shows the response time and PBHR for
the different bit-widths of a portmap counter. In the case of1-bit
counter, PBHR of 64% shows its weakness from miss correlation
and relatively low responsiveness. On the other side, 2-bitand 4-
bit counters achieve PBHR of about 90% with the aid of the cor-
relation history. Even though PBHR of 4-bit counter is a slightly
higher than that of 2-bit counter, their response times are almost
same. This result demonstrates 2-bit counter is the best choice for
reasonable performance and memory overheads. Although no cor-
relation shows reasonable responsiveness, its PBHR is verylow
resulted from exhaustive partial boosting, which is inefficient due
to unproductive domain switches.

5.3 Realistic Workload

We evaluate our mechanism over realistic workloads for a virtual
desktop farm and consolidated development machines. Virtualiza-
tion is convenient for developing in that developers can work on
their target environment anywhere with the developing tools in-
stalled in virtual machine images. As with other experiments, we
concurrently run five CPU-bound domains with the PBratio of
0.125, the inspection window size of three, and the bit-width of
portmap counter of two. Figure 8(a) and Figure 8(b) show the re-
sponse time of a text editing task with running compilation and
web browsing, respectively. The web browsing workload is made
by running web browser with three sites containing several Flash
animations, which is CPU-intensive. The text editing is carried
out throughssh connection. Our mechanism improves the response
time of text editing with the CPU-bound workloads.

Figure 9(a) shows the execution time and CPU usage of four
different I/O-bound tasks (grep, find, wget, andcp) mixed with
CPU-bound workloads (Xen compilation and file compression);

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F

Response time (sec)

Normal
TAVS

(a) Developer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F

Response time (sec)

Normal
TAVS

(b) Desktop user

Figure 8. The response time for text editing

 0

 0.2

 0.4

 0.6

 0.8

 1

grep
(+compile)

find
(+compile)

wget
(+compress)

smb cp
(+compress)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

C
P

U
 u

sa
ge

 (%
)

Normal
TAVS

IDD
Dom1

Dom2-Dom5

(a) Execution time and CPU usage

-100
-50

 0
 50

 100
 150
 200
 250
 300

 0 100 200 300 400

T
he

 d
eg

re
e

of
 b

el
ie

f

Elapsed time (sec)

grep
cc1

-100
-50

 0
 50

 100
 150
 200
 250
 300

 0 100 200

T
he

 d
eg

re
e

of
 b

el
ie

f

Elapsed time (sec)

find
cc1

(b) The degree of belief

Figure 9. Performance and CPU usage for realistic workloads

cp copies a large number of files from a remotesamba server to
the local disk. From the result, we show the performance of I/O-
bound tasks is improved without compromising CPU fairness.In
addition, PBHR is more than 99% for all cases. Figure 9(b) shows
the degree of belief of tasks for each workload pair; the horizontal
line represents BelThreshold (20). The result shows that the degree
of belief well reflects the I/O-boundness of guest-level tasks. The
results ofwget and samba copy are omitted because they show
similar cut to that offind.

5.4 Overhead

This section describes overheads for our task-aware scheduling. To
evaluate the overhead for tracking I/O-bound tasks, we run 400
tasks in a domain and make them communicate each other by
usinghackbench. The average slowdown for 100 runs is 0.06% and
thus shows a negligible tracking overhead. In addition, we have
an IDD send network requests intensively to a domain with full
CPU utilization to show the overhead for recording and checking

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 0.0625 0.125 0.25 0.5

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PBratio

Average CPU throughput
Network throughput

Figure 10. The overall system performance

port information. As a result, there is no degradation of network
throughput for our mechanism, since port information is kept in
the default shared page with the limited number; the defaultshared
page contains frequently referenced data such as an event channel,
and therefore is likely in a hardware cache.

We evaluate the overall system performance affected by partial
boosting. Figure 10 shows the network throughput of a domain
and the average CPU throughput of CPU-bound domains for the
same experimental configuration with Figure 5(b). In this figure,
the average CPU throughput of CPU-bound domains decreases as
more partial boosting is allowed to one domain, since the increased
I/O makes an IDD consume more CPU and results in more context
switching. However, the degradation of CPU throughput is small
in comparison with the increased I/O throughput. The ratio of the
increased network throughput to the decreased CPU throughput is
about48 : 1 in this evaluation.

6. Related Work
This section compares our work with previous research on VM
scheduling and inference techniques using gray-box knowledge.

6.1 VM Scheduling

Performance analysis for VM schedulers has been well conducted
by Cherkasova and Guptaet al. on the Xen VMM. They focused on
the I/O performance over the I/O model of Xen using IDD. They
analyzed the I/O performance of three schedulers: BVT, SEDF, and
the credit scheduler [7, 6]. This work shows the I/O performance
of the schedulers according to different parameters and workloads.
Furthermore, they demonstrated that the I/O model of Xen makes
CPU allocation and accounting complicated because an IDD pro-
cesses I/O on behalf of guest domains. To enhance the accounting
mechanism, they proposed SEDF-DC [12], which distributes the
CPU usage of an IDD into corresponding guest domains that trig-
ger I/O operations to the IDD.

Govindanet al. proposed a communication-aware VM schedul-
ing mechanism on consolidated hosting environment [11]. Their
mechanism usesnetwork intensity as a scheduling metric for high
throughput of network intensive workloads. In addition, they de-
vised anticipatory scheduling for a network sender that transmits
a packet periodically. Their scheduling mechanism achieves high
performance over specific workloads such as a network intensive
server or a streaming server. Their heuristic method, however, does
not tackle the responsiveness of non-intensive interactive work-
loads and the performance of block I/O tasks.

Ongaroet al. explored the impact of a VM scheduler for various
combinations of scheduling features over multiple guest domains
running different types of applications [20]. They mainly focused
on the operation of the credit scheduler and its enhancement. Their
enhancement includes fair event channel notification, preemption
minimization, and VCPU ordering based on remaining credit.In
the evaluation, they experimented on the credit and SEDF sched-

ulers according to their enhancement and original featuressuch
as boosting. They concluded that a latency-sensitive workload has
poor responsiveness if the workload is mixed with CPU-boundones
in the same domain.

To cope with a semantic gap in VM scheduling, we proposed
a guest-level priority-based scheduling mechanism in previous re-
search [17]. This work is based on an intrusive approach in that a
guest kernel explicitly informs the VMM of guest-level priorities
of runnable and blocked tasks. In the credit scheduler-based im-
plementation, the VMM preferentially schedules a guest domain
with the highest guest-level priority if the VCPU of the domain has
remaining credit. In contrast to this work, our task-aware schedul-
ing mechanism is non-intrusive by using inference techniques and
presents the enhanced correlation mechanisms.

6.2 VMM-level Inference Techniques

Many novel inference techniques monitor guest-level behaviors and
achieve better resource allocation. While the use of explicit infor-
mation from a guest kernel has the limitations of untrustworthi-
ness and kernel modification, sophisticated VMM-level inference
is very useful to enhance resource management transparently. Sev-
eral inference techniques use gray-box knowledge, which isinfor-
mation acquired by monitoring output or exploiting algorithmic
knowledge for operating systems [3].

Joneset al. presented various inference techniques for moni-
toring the buffer cache [15], tracking guest-level tasks [14], and
detecting hidden malicious tasks [16] at the VMM-level. Antfarm
is a task tracking technique that monitors virtual address space
switches. In Antfarm, the VMM tracks the creation, switching,
and termination of tasks while it matches an address space iden-
tifier with a task. By using this tracking technique, they proposed
task-aware anticipatory scheduling, which is a disk I/O scheduling
mechanism relying on task-specific information. Furthermore, they
developed a hidden task detection mechanism, called Lycosid, by
using Antfarm. Lycosid detects the existence of hidden malicious
tasks on the basis of the task view of the user and that of the VMM.
The task tracking is a crucial technique, since a task is a very im-
portant abstraction of general operating systems.

7. Conclusions
As system virtualization is more prevalent in various partsof the
computing environment, a semantic gap disturbs the efficient re-
source management of the VMM. The inference technique us-
ing gray-box knowledge from empirical studies of operatingsys-
tems can bridge the semantic gap in that the technique is trans-
parent and can be easily deployed. This paper introduces a novel
VM scheduling mechanism based on the I/O-boundness of guest-
level tasks by using lightweight inference mechanisms. By adopt-
ing task-awareness in VM scheduling, we give intelligence to the
VMM in favor of I/O performance while guaranteeing CPU fair-
ness. Our inference technique for tracking I/O-boundness and the
correlation mechanisms are lightweight and best-effort for preserv-
ing the economy of the VMM. Our task-aware scheduling is effec-
tive for unpredictable and varying workloads such as virtual desk-
top or cloud computing environments.

Our current prototype only considers the case where a guest
domain has one VCPU on a single physical CPU. Thus, we do
not address migration issues for guest-level tasks and VCPUs.
The current credit scheduler tends to relocate a VCPU between
physical CPUs mainly focusing on balancing the load of CPU. As
future work, we plan to extend our prototype to support multi-core
systems for improving I/O performance based on task-awareness.

Acknowledgments
This work was supported by the Korea Research Foundation Grant
funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2008-314-D00345).

References
[1] Sun virtual desktop infrastructure software.http://www.sun.com/

software/vdi/.

[2] Virtual desktop infrastructure (VDI). White paper of VMware.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. InProc. SOSP, 2001.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProc. SOSP, 2003.

[5] D. P. Bovet and M. Cesati.Understanding the Linux Kernel. O’Reilly,
3rd edition, 2005.

[6] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of thethree
CPU schedulers in Xen.SIGMETRICS Perform. Eval. Rev., 35(2):42–
51, 2007.

[7] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual is harder
than real: Resource allocation challenges in virtual machine based it
environments. Technical Report HPL-2007-25, February 2007.

[8] K. Fraser, S. H, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual ma-
chine monitor. InProc. Workshop on OASIS, 2004.

[9] T. Garfinkel and M. Rosenblum. When virtual is harder thanreal:
security challenges in virtual machine based computing environments.
In Proc. HOTOS, 2005.

[10] I. J. Good. Weight of evidence: A brief survey. InProc. Second
Valencia Int’l Meeting on Bayesian Statistics, 1983.

[11] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubra-
maniam. Xen and co.: communication-aware CPU scheduling for
consolidated Xen-based hosting platforms. InProc. VEE, 2007.

[12] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing
performance isolation across virtual machines in Xen. InProc.
ACM/IFIP/USENIX Middleware Conference, November 2006.

[13] S. T. Jones.Implicit operating system awareness in a virtual machine
monitor. PhD thesis, Madison, WI, USA, 2007. Adviser-Remzi H.
Arpaci-Dusseau.

[14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Antfarm: Tracking processes in a virtual machine environment. In
Proc. USENIX Annual Technical Conference, 2006.

[15] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger:
Monitoring the buffer cache in a virtual machine environment. In Proc.
ASPLOS-XII, 2006.

[16] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. VMM-
based hidden process detection and identification using Lycosid. In
Proc. VEE, 2008.

[17] D. Kim, H. Kim, M. Jeon, E. Seo, and J. Lee. Guest-aware priority-
based virtual machine scheduling for highly consolidated server. In
Proc. Euro-Par, 2008.

[18] R. Love. Linux Kernel Development (2nd Edition) (Novell Press).
Novell Press, 2nd edition, 2005.

[19] M. K. McKusick and G. V. Neville-Neil. Thread scheduling in
FreeBSD 5.2.Queue, 2(7):58–64, 2004.

[20] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. InProc. VEE, 2008.

[21] M. E. Russinovich, M. E. Russinovich, D. A. Solomon, andD. A.
Solomon. Microsoft Windows Internals, Fourth Edition. Microsoft
Press, Redmond, WA, USA, 2004.

[22] J. E. Smith. A study of branch prediction strategies. InProc. ISCA,
1998.

