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Abstract. In virtualized clouds, machine memory is known as a re-
source that primarily limits consolidation level due to the expensive cost
of hardware extension and power consumption. To address this limita-
tion, various memory deduplication techniques have been proposed to
increase available machine memory by eliminating memory redundancy.
Existing memory deduplication techniques, however, lack isolation sup-
port, which is a crucial factor of cloud quality of service and trustworthi-
ness. This paper presents a group-based memory deduplication scheme
that ensures isolation between customer groups colocated in a physical
machine. In addition to isolation support, our scheme enables per-group
customization of memory deduplication according to each group’s mem-
ory demand and workload characteristic.
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1 Introduction

Intrinsic trade-off between efficient resource utilization and performance isola-
tion arises in cloud computing environments where various services are provided
based on a shared pool of computing resources. For high resource utilization,
cloud providers typically service a virtual machine (VM) as an isolated compo-
nent and enable multiple VMs to share underlying physical resources. Although
aggressive resource sharing among customers gives a provider more profit, perfor-
mance interference from the sharing could degrade quality of service customers
expect. Performance isolation that ensures quality of service makes it difficult for
providers to increase VM consolidation level. Many researchers have addressed
this conflicting goal focusing on several sharable resources [2,4,5,7,12].
Among those sharable resources, machine memory is known as a resource
that primarily inhibits high degree of consolidation due to the expensive cost
of hardware extension and power consumption [6]. In order to deal with the
memory space restriction, memory deduplication has drawn traction as a way
of increasing available memory by eliminating redundant memory. Since the
memory deduplication was introduced by the VMware ESX server [15], it has
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been well-studied on how effectively to find redundant memory and how to take
advantage of saved memory [6,11]. Due to its effectiveness in reducing memory
footprint for hosting requested VM instances, memory deduplication has been
appealing to cloud providers who aim to save the total cost of ownership.

Existing memory deduplication techniques, however, lack the functionality
of performance isolation in spite of their efficiency. The problem stems from the
system-wide operation of memory deduplication across all VMs that reside in
a physical machine. In virtualized clouds, a physical machine can accommodate
several VMs that belongs to different customers who do not want their sensitive
memory contents to be shared with other customers’ VMs. Existing schemes do
not provide a knob to confine the deduplication process to a group of VMs that
want to share their memory one another (e.g., VMs in the same customer or
cooperative customers). In addition, the resource usage for system-wide dedu-
plication cannot be properly accounted to corresponding VMs that are involved
in sharing. Since resource usage for memory deduplication itself is nontrivial [11,
8], appropriate accounting for the expense of deduplication is a requisite support
for cloud computing, which typically employs pay-per-use model.

This paper proposes a group-based memory deduplication scheme that allows
the hypervisor to run multiple deduplication threads, each of which is in charge
of its designated group. Our scheme provides an interface for a group of VMs,
which want to share their memory, to be managed by a dedicated deduplication
thread. The group-based memory deduplication has the following advantages.
Firstly, memory contents of one group are securely protected from another group.
This feature prevents security breaches that exploit memory deduplication [14].
Secondly, the resource usage of deduplication is properly accounted to a cor-
responding group. Thirdly, a deduplication thread can be customized based on
the characteristics and demands of its group. For example, deduplication rates
(i.e., scanning rates) can be differently set for each group based on workloads.
Finally, memory pages that are reclaimed by a per-group deduplication thread
can be readily redistributed to their corresponding group.

The rest of this paper is organized as follows: Section 2 describes the back-
ground and motivation behind this work. Section 3 explains the design and
implementation of the group-based memory deduplication. Then, Sect. 4 shows
experimental results and Sect. 5 discusses issues arising in our scheme and fur-
ther improvement. Finally, Sect. 6 presents our conclusion and future work.

2 Background and Motivation
2.1 Memory Deduplication

Memory deduplication is a well-known technique that condenses physical mem-
ory space by eliminating redundant data loaded in memory. In VM-based consol-
idated environments, considerable amount of memory can be duplicated across
VMs especially when they have homogeneous software stacks such as OSes and
applications or work on common working set on a shared storage. By reclaim-
ing redundant memory, the hypervisor can give more memory to a VM whose



working set exceeds its memory in order to improve performance. In addition,
increase in available memory allows more VMs to run in a physical machine,
thereby increasing consolidation level. One representative scheme of memory
deduplication is a transparent content-based page sharing [15], which was firstly
introduced by the VMware ESX server. This scheme periodically scans physical
memory, compares scanned pages based on their contents, merges them if they
are identical, and reclaims redundant memory. In order to ensure transparency, a
shared page is marked as copy-on-write, by which the shared page will be broken
to private copies in response to a write attempt to it.

2.2 Performance Isolation in Clouds

Cloud computing is an emerging technology trend from the perspective of elastic
and utility computing on a large shared pool of resources. Among various types
of cloud computing, Infrastructure-as-a-Service (IaaS) platform provides a cus-
tomer with the entire control of software stack in the form of a VM. Provisioned
VMs could share the resources of a physical machine according to their service
level agreement (SLA). Transparently enabling multiple VMs to share physical
resources, cloud providers reduce the number of machines that host requested
VM instances, thereby saving the total cost of ownership.

Despite the cost saving, sharing cloud resources intrinsically causes perfor-
mance interference between individual VMs. Since cloud computing typically
complies with a pay-per-use model, the performance a customer expects should
not be interfered by other customers’ instances. Many researchers have empha-
sized that sharable hardware resources such as last-level CPU caches [12], ma-
chine memory [4], and even entire components of hardware [7], should be properly
isolated from each VM.

2.3 Limitations of Memory Deduplication in Clouds

Although memory deduplication improves the performance and consolidation
level by exploiting saved memory, existing schemes lack the functionality that
ensures isolation among customer instances. The memory deduplication process
of the current techniques is globally conducted by the hypervisor. This system-
wide memory deduplication poses several issues on performance isolation and
trustworthiness.

Firstly, memory contents that come from different customer VMs can be
shared. This type of sharing across customer boundary may be unwanted be-
cause memory contents could contain sensitive information. In fact, attacks that
exploit security breaches of memory deduplication were addressed [11, 14]. Sec-
ondly, computational overheads for memory deduplication are not properly ac-
counted to each corresponding customer. Memory deduplication entails compu-
tational tasks including scanning, hashing, byte-by-byte comparison, and copy-
on-write breaking. Since these tasks are done in a single execution context, their
CPU usages cannot be billed to an appropriate VM whose memory is involved
in deduplication. Thirdly, a deduplication rate should be globally set without
considering customers’ demands or workload characteristics. The pace at which



identical pages are shared determines a reprovisioning rate of reclaimed memory,
which contributes to performance improvement.

3 Group-based Memory Deduplication
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Fig. 1. Architecture overview of the group-based memory deduplication

3.1 Design

Our group-based memory deduplication scheme provides a mechanism that sup-
ports multiple deduplication threads, each of which is dedicated to each group
defined by administrators. The interface for grouping VMs is exposed to user
space so that administrators can readily adjust grouping policies and per-group
customization on the fly. Figure 1 illustrates the architecture overview of our
mechanism.

In order to ensure isolation between groups, a deduplication thread is in-
volved in virtual address spaces that are registered to its group. Accordingly, all
deduplication operations are solely carried out on a designated memory space
of each group. Since a deduplication thread is bound to its group, the resource
usage for deduplication can simply be accounted to its group. Besides dedupli-
cation, redistributing reclaimed memory is done within each group. As shown
in Fig. 1, a per-group deduplication thread notifies its corresponding memory
redistributor of how many pages are reclaimed by its group. Each per-group
memory redistributor supplies the reclaimed memory to its group so that the
VMs of the group take advantage of increased memory.

In addition, an administrator can differently set scan rates according to each
group’s demand or workload characteristics. For example, a high scan rate can
be set to a group if its customer wants aggressive scanning in favor of addi-
tional memory, by which performance benefits outweigh scanning overheads.
Conversely, a group that has CPU-intensive workloads with enough memory
may desire a low scan rate. This per-group scan rate gives more flexibility by
allowing group-specific customization.



3.2 Implementation

We implemented the prototype of our scheme by extending the Linux KSM [1].
The current KSM conducts system-wide memory deduplication over virtual ad-
dress spaces that are registered via the madvise system call. When Kernel Virtual
Machine (KVM) [9] creates a VM instance, it automatically registers the VM’s
entire memory regions to KSM. Once KSM is initiated, a global deduplication
thread, named ksmd, performs deduplication with respect to all VM’s memory
regions. For group-based memory deduplication, we modified this system-wide
deduplication algorithm by splitting the global ksmd into per-group ksmds. Each
per-group ksmd operates with its own data structures that are completely iso-
lated from other ksmds.

For a grouping interface, we used the cgroup [10], which is a general compo-
nent to group threads via the Linux VFS. We added the KSM cgroup subsystem
for administrators or user applications to easily define deduplication groups.
Each group directory includes several logical files, which indicate a scan rate
and the number of shared pages to interact with its per-group ksmd.

Taking advantage of the cgroup interface, the memory redistributor is simply
implemented as a user-level script. This script periodically checks the number
of reclaimed pages for each group and reprovisions them to a corresponding
group by interacting with a guest-side balloon driver. Regarding intra-group
reprovisioning, our current version evenly supplies given memory to VMs within
a group. However, more sophisticated policies can be applied by using working
set estimation techniques.

4 Evaluation

In this section, we present preliminary evaluation results to show how the group-
based memory deduplication scheme impacts on memory sharing and redistri-
bution behaviors.

4.1 Experimental Environments

Our prototype is installed on a machine with Intel i5 quad core CPU 760
2.80GHz, 4GB of RAM, and two 1TB HDDs. This host machine runs Ubuntu
10.10 with the gemu-kvm 0.14.0 and our modified Linux kernel 2.6.36.2. We com-
pared our scheme, called GRP, with two baseline schemes: NOGRP-equal and
NOGRP-SE. While the two baselines have non-group memory deduplication in
common, they have different reprovisioning policies. NOGRP-equal reprovisions
reclaimed memory evenly to existing VMs, whereas NOGRP-SE gives a VM
reclaimed memory in proportion to its sharing entitlement, which means how
much contribution a VM makes to save memory; this reprovisioning scheme was
proposed by Milos et al [11]. For example, if two VMs make all reclaimed pages,
they deserve to receive all additional memory they contribute. From the per-
spective of isolation, we believe that this scheme is more suitable than the equal
reprovisioning for cloud environments.



We evaluated a two-group scenario where each group has two VMs configured
as follows:

— MR group includes two VMs that run a distributed wordcount on the
Hadoop MapReduce framework. Hadoop slave instances concurrently com-
pute with a 200MB input file in the two VMs, one of which is also in charge
of the master for controlling the slaves. This group uses Ubuntu 10.10 as a
guest OS.

— FIO group includes two VMs each of which run a random read workload on
700MB common data set. We used sysbench and measured average through-
put for 400 seconds. This group uses Fedora 14 as a guest OS.

To minimize interferences between groups, we used cpu, cpuset, and blkio
cgroup subsystems for both NOGRP and GRP. NOGRP baselines allow a global
ksmd to belong to its own group, while our scheme makes each per-group ksmd
belong to its corresponding group so that deduplication cost is accounted to its
group. The groups of main workloads including ksmd group (NOGRP case) has
sufficiently higher CPU shares than other system threads in order to minimize
the effect of system daemon activities.

4.2 Effects of Group-based Memory Deduplication

We evaluated the performance and memory changes with sharing trends for two
configurations, in which one group has enough memory to cover working set
while the other does not. FI10,,, indicates that the FIO group does not have
enough memory to cover its working set (MR-VM:FIO-VM=640MB:640MB),
whereas M Ry,,, indicates that the MR group lacks memory for its working set
(MR-VM:FIO-VM=384MB:896MB). With respect to our scheme, we varied scan
rates for each group; GRP-x:y means the ratio of scan rates for MR and FIO.
To compare the performance across all policies, we make the sum of scan rates
for each policy equal (10,000 pages/sec).

Figure 2 shows the normalized throughput of each group for different policies.
The first thing to note is two NOGRPs show different performance. In the case of
FI0O;,, the FIO group of NOGRP-equal shows much higher performance than
that of NOGRP-SE. To investigate this difference, Fig. 3 shows the changes in
memory for each VM with the amount of reclaimed memory as time progresses.
For both cases, the MR group emits a large amount of reclaimed memory for
25-60 seconds. Although the MR group has the contribution for the reclaimed
pages during the period, NOGRP-equal reprovisions them evenly to the two
groups. Since the FIO group lacks the memory in F' 10, such aid of additional
memory boosts its performance. Furthermore, the increased memory helps the
FIO group make more reclaimed memory by sharing more pages. On the other
hand, NOGRP-SE reprovisions the initial reclaimed memory to only the MR
group based on its sharing entitlement, so that the FIO group cannot benefit
from any additional memory during the initial period.

Conversely, in the case of M Ry, the MR group of NOGRP-SE achieves
higher performance than that of NOGRP-equal. As shown in Fig. 4, NOGRP-
SE makes the MR group quickly receive more memory contributed by its own
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Fig. 4. Memory changes in the NOGRP cases with reclaimed memory (M Riow)

sharing during the initial period, thereby boosting the performance of the MR
group. The results of F10;,, and M R;,, imply that neither of the non-group
schemes (NOGRP-equal and NOGRP-SE) always achieves the best performance,
since each group’s memory demands are different.

Figure 2 also shows the results of the group-based memory dedupication with
various scan rate settings. As shown in the figure, the best performance results
are achieved on certain scan rate ratios: 1:9 for F'10j,,, and 9:1 for M Ry, It is
intuitive that a higher scan rate makes a group that lacks memory quickly reap
additional memory, thereby improving its performance. Figure 5 shows the two
cases of the best performance. As expected, a high scan rate quickly produces
reclaimed memory, which is then reprovisioned to a group that desires more
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Fig. 5. Memory changes in the best performance cases of GRP with reclaimed memory

memory. Although a low scan rate slowly emits a small amount of reclaimed
memory, the performance of a group that has enough memory is not affected.

As a result, the group-based memory deduplication can achieve the best
performance if a scan rate for each group is appropriately chosen. Considering
that NOGRP-SE is currently the most suitable approach for clouds, due to its
capitalism, it does not have room for customization on the basis of each group’s
memory demand and workload characteristic. In Sect. 5.3, we discuss our plan
to devise the dynamic adjustment of per-group scan rates.

5 Discussion

In this section, we discuss promising applicability of the group-based dedupli-
cation focusing on VM colocation, various grouping policies, and feasible cus-
tomization of per-group deduplication.

5.1 VM Colocation

For the group-based memory deduplication to be effective, multiple VMs within
the same group should be colocated in a physical machine. Assuming that a
group is established based on a customer, there are several cases to colocate
VMs from the same customer. Firstly, as novel hardware (e.g., many core proces-
sors and SR-IOV network cards) has been increasingly supporting consolidation
scalability [7], a physical machine becomes capable of colocating the increasing
number of VMs. This trend increases the likelihood that VMs from the same
customer are colocated. Secondly, VM colocation policies that favor cloud-wide
resource efficiency (e.g., memory footprint [16] and network bandwidth [13])
would encourage a cloud provider to colocate VMs from the same customer.
For example, if a cloud customer leases VMs for distributed computing on the
MapReduce framework, the VMs have homogeneous software stack, common
working set, and much communication traffic among them. In this case, a cloud
provider seeks to colocate such VMs in a physical machine for efficiency as long
as their SLAs are satisfied.

Although the same customer’s VMs are not colocated, there are still chances
to take advantage of the group-based memory deduplication. As cloud computing
has been embracing various services, there are growing opportunities to share
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data among related services. CloudViews [3] presents a blueprint of rich data
sharing among cloud-based Web services. We expect that such direction allows
our scheme to group cooperative customers who agree with data sharing. In
addition, intra-VM memory deduplication may not be negligible depending on
workloads when a VM is solely located in a group. Some scientific workloads
have a considerable amount of duplicate pages in native environments [1].

5.2 Grouping Policies

We are currently considering various grouping policies other than the customer-
based isolation policy. Intuitively, VMs can be grouped based on their sharing
opportunities likely attained by the common software stack and working set [15].
To this end, we can statically group the same virtual appliances or distributed
computing nodes. For dynamic grouping, a cloud provider can figure out sharing
opportunities by keeping track of memory fingerprint on the fly. In the case of
clouds, which do not allow arbitrary grouping across independent customers,
providers can offer their customers a grouping option that benefits from more
available memory by sharing in a symbiotic manner.

Similarly, a cloud provider can service a pricing model that offers best-effort
available memory with the lower bound guarantee. Note that the additional
memory reprovisioned via deduplication can be returned by copy-on-write break-
ing at any time. For this reason, such additional memory is provided to customers
in a best-effort manner. The group-based memory deduplication can group VMs
that participate in this type of memory provisioning. Nathuji et al. [12] proposed
this type of pricing model with respect to CPU capacity offering.

5.3 Per-group Deduplication Customization

The group-based memory deduplication enables per-group customization for
deduplication process. As shown in Sect. 4, the performance of applications that
require more memory for covering their working set relies on memory repro-
visioning rates. Based on the results, we are extending our scheme to support
dynamic deduplication rates by monitoring workloads for each group. Currently,
we take two metrics into account for scanning rate adjustment.

Firstly, the hypervisor can monitor how many pages are being reclaimed for
each group during a certain time window. When VMs in a group abruptly start
loading a large amount of identical pages, the number of pages shared will rapidly
increase. In this case, a higher scanning rate boosts the reprovisioning rate of ad-
ditional memory, thereby improving the performance. Secondly, when workloads
in a group become CPU-intensive, a high deduplication rate may degrade their
performance due to deduplication overheads. Since the deduplication process
may pollute CPU caches and consume memory bandwidth, these overheads may
offset or outweigh the benefits of deduplication with regard to CPU-intensive
workloads. In this case, it is important to determine an appropriate rate for
overall performance by considering CPU usage and memory demands.



6 Conclusions and Future Work

In this paper, we devise a knob to group VMs that allow their memory to be
shared one another. The proposed scheme enables the memory deduplication
process to be isolated between groups and customized based on each group’s
demand and characteristic. We believe that the group-based isolation is an es-
sential feature of memory deduplication in cloud computing environments, which
regard performance isolation and trustworthiness as crucial factors.

As discussed, we plan to explore various grouping policies and dynamic ad-
justment of deduplication rates on the basis of workload characteristics. Fur-
thermore, we are investigating a flexible reprovisioning scheme that effectively
exploits reclaimed memory to improve overall performance in the same group.
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